
Hypergraph MBQC in the ZH-calculus

Candidate no. 1047735

A thesis submitted for the degree of
Master of Science in Computer Science

Trinity Term 2021

Abstract

Quantum computing studies how to perform computations within quantum systems
where certain computations are much more efficient than in classical computers.
Whereas we can describe quantum computations using an analogue of classical
logic circuits, measurement-based quantum computation (MBQC) models focus on
measuring qubits in an intricate resource state. The ZH-calculus provides a standard
diagrammatic way to represent and reason about MBQC. In this thesis, we use the
ZH-calculus to prove correctness of MBQC protocols, investigate the link between
hypergraph and phase gadget state MBQC, construct a new MBQC model that
achieves universal computations with a deterministic protocol, and prove correctness
of our construction. First, we use the ZH-calculus to justify MBQC protocols of
two hypergraph states: the GGM state presented by Gachechiladze et al., and the
Union Jack state from Miller et al. Next, we study the link between hypergraph and
phase gadget MBQC by applying Graphical Fourier theorem. Finally, we present
a new MBQC model, and use the ZH-calculus to show that our MBQC model not
only implements deterministic computations by allowing for error corrections in
measurement patterns, but also achieves universal computations using only single-
qubit Pauli X and Z measurements. Our proofs for protocols yield intuitive insights
into hypergraph MBQC, our finding about the connection between hypergraph and
phase gadget states may be used in future studies of relations between MBQC
models, and the new construction of resource state provides an alternative idea to
deterministically achieve universality in MBQC.

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Outline . 5

2 Preliminaries 6
2.1 Quantum computing . 6
2.2 ZX-calculus . 9
2.3 ZH-calculus . 14
2.4 Phase gadgets . 16
2.5 Graph states and Hypergraph states 18
2.6 Graphical Fourier theory . 20
2.7 Universal computations . 20
2.8 Quantum circuit model . 21
2.9 Measurement-based quantum computation 21

2.9.1 Single-qubit Pauli X and Z measurements in ZH-calculus . . . 23
2.9.2 Measurement errors in ZH-calculus 24
2.9.3 Measurement patterns in ZH-calculus 28

3 Hypergraph MBQC Models 32
3.1 GGM state based MBQC model . 33

3.1.1 The GGM state . 33
3.1.2 Lemmas . 35
3.1.3 Measurement patterns . 40
3.1.4 Correctness of the protocol . 47

3.2 Union Jack state based MBQC model 56
3.2.1 Introduction to the Union Jack state 56
3.2.2 Correctness of the protocol . 56

4 From Hypergraph to Phase Gadget MBQC 59
4.1 Sign-related decomposition . 60
4.2 Equivalence to phase gadget states 63

iii

Contents

5 A New MBQC Model 66
5.1 Notations . 67
5.2 The new resource state . 70
5.3 Measurement patterns . 70
5.4 Proofs for measurement patterns . 78
5.5 Correction of measurement errors . 93
5.6 Universality and determinism . 100

6 Conclusion and Future Work 103
6.1 Conclusions . 103
6.2 Future work . 105

Appendices

A Additional measurement patterns 109
A.1 Measurement patterns for chapter 3 109
A.2 Measurement patterns for chapter 5 109

References 116

iv

1
Introduction

1.1 Introduction

Quantum computing is a study of computations in quantum systems [1]. One of the

reasons why people have been investing efforts into the study of quantum computing

is that quantum computers can efficiently perform some tasks for which there are no

known efficient algorithms on classical computers [2]. Measurement-based quantum

computation (MBQC) describes an idea to implement quantum computations. In

MBQC, computations are implemented by performing quantum measurements on a

highly entangled resource state prepared in advance. One of the most well-studied

MBQC models is the one-way model [3]. In the one-way model, a graph state is

prepared as the resource state, where graph states are a well-know family of states

taking the form of simple undirected graphs [4–7]. Then, single-qubit measurements

are performed on the graph state to implement computations.

In this thesis, we focus on the following four aspects of MBQC: universality,

determinism, parallelism, and measurements. For universality, we are interested

in whether a MBQC model achieves universal computations. Since MBQC is a

way to implement computations, it is natural to consider the set of computations

that can be represented by the resource state and measurements performed on it.

Ideally, we want this set to include the whole set of quantum computations we

1

1. Introduction

care about. For example, the MBQC models proposed in [8], [9], [10], [11] and

[12] can all achieve universal computations. For determinism, the problem we care

about is whether a MBQC model has a deterministic protocol. Measurements

cannot give deterministic outcomes, so undesired outcomes of measurements known

as errors are introduced in the process of MBQC. Therefore, in order to provide

a deterministic protocol and implement computation in a deterministic way, we

need a scheme to correct measurement errors. For example, the MBQC model

in [10] takes the idea of feed-forward to correct errors and achieves determinism.

For parallelism, we want to know about the extent to which we can parallelize

computations. In MBQC, it is normal that some measurements depend on others, so

there may be constraints on the sequence of computations implemented in MBQC,

which potentially influences parallelism of computations. For instance, the MBQC

model proposed in [12] cannot implement all CCZ gates and Hadamard gates in

parallel, because CZ errors cannot freely pass through Hadamard gates and have

to be corrected before implementations of Hadamard gates. For measurements,

we are interested in what kind of measurements are needed in a MBQC protocol.

For example, if we only allow Pauli measurements in the one-way model, then by

Gottesman-Knill theorem [13] universality cannot be achieved. We need non-Pauli

measurements to achieve the full computational power of this model.

Resource states are of importance to MBQC. There are different ideas to construct

resource states. In this thesis, we focus on two families of resource states: hypergraph

states and phase gadget states. Hypergraphs are generalized simple undirected

graphs. While the edge of a simple undirected graph only contains two vertices, the

edge of a hypergraph is called a hyperedge and may contain more than two vertices.

Hypergraph states are a family of states taking the form of hypergraphs, and a

hypergraph state is implemented by preparing a qubit for each vertex and applying

a CnZ gate for each hyperedge [4]. The GGM state [12] and the Union Jack state

[11] are both hypergraph states, and we sometimes call the MBQC model based on

hypergraph states as hypergraph MBQC or hypergraph state MBQC. Phase gadget

2

1. Introduction

states are a family of resource states which also have a structure of hypergraph.

However, in phase gadget states each hyperedge corresponds to a phase gadget rather

than a CnZ gate. Phase gadgets [14] are special quantum gates, and they entangle

qubits in a different way from CnZ gates. We sometimes call the MBQC model

based on phase gadget states as phase gadget MBQC or phase gadget state MBQC.

The ZX-calculus is a graphical language presented by Coecke and Duncan as

a reasoning tool for quantum computations [15]. In [15], Duncan has shown the

use of ZX-calculus in reasoning about MBQC. ZH-calculus presented in [16] is one

of the variants of ZX-calculus. Compared to ZX-calculus, ZH-calculus makes it

easier to reason about systems that contain CnZ gates, the elements for hypergraph

resource states. In [17], Graphical Fourier theory is presented and it links ZH-

calculus with ZX-calculus by providing diagrammatic translation between these

two graphical languages.

The aim of this thesis is threefold:

(i) Use ZH-calculus to give diagrammatic justifications for hypergraph

state MBQC models in [11, 12]. Although justifications are given in [11, 12]

for GGM state and Union Jack state based MBQC, they are neither intuitive nor

easy to verify. In particular, for the GGM state model, the explanations given in

[12] for measurement patterns deterministically implementing CZ wires involve a

lot of matrix notations and text descriptions and thus are neither straightforward

nor intuitive, and some explanations for transformations of states are missing. For

the Union Jack state model, the measurement pattern implementing a CCZ gate

contains many sub-measurement patterns and complex connections between them,

but the justification in [11] for this measurement pattern is brief and not intuitive.

Although diagrammatic justifications for the sub-measurement patterns are given

in [18], there is no intuitive explanations for why these patterns compose together

to implement a CCZ gate. So, we aim to give more intuitive justifications, and our

contribution can increase interpretability and explainability of hypergraph MBQC.

3

1. Introduction

(ii) Investigate the relation between hypergraph and phase gadget state

MBQC. Although hypergraph states and phase gadget states both have a structure

of hypergraphs, the relation between hypergraph state MBQC and phase gadget state

MBQC has not yet been studied up to the time of this writing. Our contribution

shows that these two families of MBQC are not totally independent to each other,

and provides motivations for future study of relation between MBQC models.

(iii) Create a new MBQC model that achieves universal computations

with a deterministic protocol using only Pauli X and Z measurements.

Our construction can be seen as an application of the link between hypergraph and

phase gadget state MBQC. Besides, the new MBQC model provides an alternative

idea to achieve universality and correct measurement errors.

Related work In [10], a phase gadget state based MBQC model is presented

where only Pauli X and Z measurements are needed to achieve deterministic

universal computations. The authors apply the technique of feed-forward to correct

measurement errors and implement deterministic computations. The authors develop

a notation for depicting precisely how each measurement pattern implements its

target gate and how it is adapted according to incoming Pauli Z and X errors to

admit feed-forward. The resource state in this model is constructed by binary phase

gadgets, while ours presented in chapter 5 is constructed by trinary phase gadgets.

In [18], the author uses ZH-calculus to show that measurement patterns in [11]

can implement SWAP gates and special UI gates. We will base our justification

for the protocol of the Union Jack state model on the results in [18]. The author

also provides diagrammatic descriptions and justifications of the action of Pauli

measurements on quantum hypergraph states and hypergraph transformation rules,

which are useful in studies of hypergraph MBQC.

4

1. Introduction

1.2 Outline

In chapter 2, we give background information on quantum computing, ZX-calculus,

ZH-calculus, and MBQC, and provide necessary preliminaries required to understand

this thesis. We focus on introductions of the two graphical languages and MBQC,

since all proofs in this thesis are described in ZH-calculus and MBQC is our topic.

In chapter 3, we use ZH-calculus to investigate the two MBQC models in [12]

and [11]. For the GGM state based MBQC, we first define hexagon notations that

make it easier to present the state, then justify measurement patterns defined on

the GGM state, and finally prove the correctness of the protocol of the GGM model.

For the Union Jack state based MBQC, we first briefly introduce the Union Jack

state, and then use ZH-calculus to show that CCZ gates can be implemented by

the measurement pattern presented in [11].

In chapter 4, we apply ZH-calculus and Graphical Fourier theorems to show the

equivalence between the Union Jack state and a phase gadget state, which both

serves as a motivation for our construction of a new resource state, and indicates

a link between hypergraph and phase gadget state MBQC.

In chapter 5, we present a new MBQC model that achieves universal computations

with a deterministic protocol via only Pauli X and Z measurements. First we

introduce notations of boxes and ropes. Then we present the new resource state

and define measurement patterns on fragments of it. Next, we use ZH-calculus

to give justifications for the measurement patterns. Then we describe and justify

how we use the technique of feed-forward to correct measurement errors in our

MBQC model. Finally, we show that universal computations can be deterministically

achieved by our MBQC model.

In chapter 6, we conclude our results and discuss some possible future work

that might be of interest to readers.

5

2
Preliminaries

In section 2.1, we introduce basic concepts in quantum computing, namely qubits,

quantum measurements and quantum gates, which will serve as basics to understand

ZX-calculus, ZH-calculus, and MBQC. In sections 2.2 and 2.3, we give an informal

introduction to ZX-calculus, a graphical language, and one of its most important

variants, ZH-calculus, which will be used as a tool of reasoning in this thesis. In

sections 2.4 and 2.5, phase gadgets and hypergraph states are introduced using

ZH-calculus. They play important roles in MBQC models as resource states. In

section 2.6, we introduce two special cases of Graphical Fourier theorems which build

a bridge between phase gadgets and H-boxes. In section 2.7, we informally discuss

about what universality of computations means and one idea to show that some

quantum computation model can achieve universal computations. In sections 2.8

and 2.9, we introduce two models of quantum computation, the circuit model and

the MBQC model. Our introduction to circuit models only serves as a contrast to

MBQC models, since we focus on MBQC in this thesis.

2.1 Quantum computing

Qubits The qubit is an abbreviation for the quantum qubit, it is created as an

analogy with the concept of a bit in classical computation [2]. However, unlike

6

2. Preliminaries

a classical bit, the state of a qubit is represented as a vector in two-dimensional

complex vector space. We define

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)

then we can represent a qubit as [2]:

|ψ〉 = α|0〉+ β|1〉

where the notation |·〉 is used to indicate that the object is a column vector, α, β ∈ C,

|0〉 and |1〉 are called computational basis states of the single-qubit system. For a

column vector |a〉, we use 〈a| to denote the conjugate transpose of |a〉. For vectors

|φ〉 and |ψ〉, we define 〈φ|ψ〉 as the inner product of |φ〉 and |ψ〉. The following

two single-qubit states are well-known:

|+〉 = 1√
2

(
1
1

)
, |−〉 = 1√

2

(
1
−1

)

In a general case, consider a n-qubit system. This system has 2n computational

basis states, namely |00..0〉, |00..1〉, ..., |11..0〉, |11..1〉, each of which is of the form

|x1x2...xn〉 [2]. The state of the n-qubit system is expressed as

|ψ〉 = α00...0|00..0〉+ α00...1|00..1〉+ ...+ α11...0|11..0〉+ α11...1|11..1〉

where α00...0, α00...1, ..., α11...0, α11...1 ∈ C.

Quantum measurements For a qubit in the state |ψ〉 = α|0〉+β|1〉, to determine

the value of α and β, we need to perform measurements on this qubit, since we

cannot directly examine their values [1]. We can perform measurements with respect

to any computational basis. For example, if we measure the state |ψ〉 with respect

to the basis |0〉 and |1〉, we will get the outcome 0 with probability |α|2 and the

outcome 1 with probability |β|2 [2]. It is required that |α|2 + |β|2 = 1. For a general

case, if we measure |ψ〉 with respect to an orthonormal basis |a〉 and |b〉, and we

express |ψ〉 as |ψ〉 = α|a〉+ β|b〉, then we will get outcome a with probability |α|2

and the outcome b with probability |β|2 [2].

7

2. Preliminaries

Quantum gates Quantum gates or gates take a state and transform it to another

state. Since states are represented by column vectors, gates are represented by

matrices [2]. We also use the term operation to call a gate. For example, we can use

two by two matrices to represent single-qubit gates. A NOT gate can be expressed as

NOT ≡
(

0 1
1 0

)

In general, a n-qubit gate is represented by a n by n matrix. For example, CNOT

gates, CZ gates, and SWAP gates are important two-qubit gates, and they have

the following matrix representations:

CNOT ≡


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CZ ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , SWAP ≡


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


However, not all matrices can be interpreted as quantum gates. For a matrix

M , it can be interpreted as a quantum gate only if M is unitary [2]. A matrix U is

unitary if U †U = I where I is the identity matrix and U † is the adjoint of U . Here,

we give matrix representations of the Hadamard gate and the phase gate, which are

important single-qubit gates that appear quite often in our latter discussions:

Hadamard ≡ 1√
2

(
1 1
1 −1

)
, φ phase ≡

(
1 0
0 eiφ

)

The S gate is a π
2 phase gate, the T gate is a π

4 phase gate, the T † gate is a −π
4

phase gate, the identity gate, identity operation or the identity wire is a 0 phase

gate, the Pauli Z gate is a π phase gate. By an identity operation, we sometimes

mean a multi-qubit gate whose matrix representation is an identity matrix. Since

the Pauli X and Pauli Z gates or operations are commonly used in this thesis,

we give their matrices as below:

Pauli X ≡
(

0 1
1 0

)
, Pauli Z ≡

(
1 0
0 −1

)

There is a useful notation for linear operators [2]: Suppose |v〉 is a vector in

an inner product space V and |w〉 is a vector in an inner product space W , we

8

2. Preliminaries

define the linear operator |w〉〈v| from V to W as

(|w〉〈v|)(|v′〉) ≡ |w〉〈v|v′〉 = 〈v|v′〉|w〉

For a n-qubit gate M on qubits x1, x2, ..., xn, we use the notation M (x1,x2,...,xn) to

denote it.

Controlled unitaries A controlled unitary U is a gate with a control qubit and

target qubits, and it works as the following way [2]: if the control qubit is set to

0, then the identity operation will be performed on target qubits; otherwise the

control qubit is set to 1, then the gate U will be performed on target qubits. For

a controlled unitary U, its control qubit acts as a switch: the gate U takes effect

on target qubits if and only if the switch is on (control bit is 1). For example, the

CNOT gate and CZ gate are both controlled unitaries. In fact, their full names are

the controlled-NOT gate and the controlled-Z gate respectively: if the control bit

is 1, then the CNOT gate performs a NOT gate on the target qubit, the CZ gate

performs a Pauli Z gate on the target qubit; if the control bit is 0, then the CNOT

gate or CZ gate performs an identity gate on the target qubit.

2.2 ZX-calculus

ZX-calculus is a graphical language introduced by Bob Coecke and Ross Duncan [19],

and it has been known as one of the most well-known tools for tasks of derivations

about multi-qubit systems in the area of quantum computing. Readers can find a

detailed introduction to ZX-calculus in [1]. This graphical language consists of ZX-

diagrams and their rewrite rules. A ZX-diagram is generated from a set of generators.

We shortly introduce basic generators, namely white and grey spiders, in ZX-calculus.

White spiders This generator is referred to as the white spider or Z-spider. A

white spider can have any number inputs and any number of outputs. By inputs

and outputs, we mean input wires and output wires respectively, and if we draw

9

2. Preliminaries

inputs as wires coming in from the left and outputs as wires coming out of the

right, we can represent a white spider as:

α... ...

α is called the phase of the spider. When α = 0 we drop the symbol and write

a white spider as:

... ...

Grey spiders This generator is referred to as the grey spider or X-spider.

α... ...

Similarly, α is called the phase of the spider. When α = 0 we drop the symbol

and write a grey spider as:

... ...

For simplicity, we sometimes call a spider with n inputs and m outputs as a

(n + m)-arity spider or (n + m)-ary spider.

One of the most important reasons why ZX-calculus is useful for derivations

about qubit systems is that we can interpret ZX-diagrams as linear maps or matrices,

and what is more amazing, every linear map can be represented by a ZX-diagram

[14]. The basic generators, white and grey spiders, are themselves ZX-diagrams, and

we give the matrix interpretations for white and grey spiders as follows:

α... ... := |0 · · · 0〉〈0 · · · 0|+ eiα |1 · · · 1〉〈1 · · · 1| ,

α... ... := |+ · · ·+〉〈+ · · ·+|+ eiα |− · · · −〉〈− · · · −| .

Next, we talk about how to put these generators together to form a ZX-diagram.

10

2. Preliminaries

Compositions Two operations are needed to generate a ZX-diagram: the sequential

composition and parallel composition. The sequential composition of two diagrams

means connecting the outputs of one diagram to the inputs of another. The parallel

composition of two diagrams is to place them side by side. Readers can read [1]

for a detailed description of sequential and parallel compositions. We use symbol

◦ to denote sequential compositions and symbol ⊗ to denote parallel compositions.

For a ZX-diagram D, we use JDK to denote the linear map representation of it.

For ZX-diagrams D1 and D2, we have

JD1 ◦D2K = JD1K · JD2K, JD1 ⊗D2K = JD1K⊗ JD2K

where in the second equation, the ⊗ symbol on the right-hand side represents

Kronecker product.

Symmetries One important property of ZX-diagrams is that we can treat ZX-

diagrams as undirected graphs. In other words, only connectivity matters in ZX-

diagrams. For example, see figure 2.1. This property is thoroughly discussed

in [1] and [14].

=

α

...

...

...
= α

...

...

...
α

...

...

...
= α

...

...

...
= α

...

...

...
α

...

...

...
=

Figure 2.1: Only connectivity matters in ZX-diagrams.

Scalars In ZX-calculus, a scalar is a diagram with zero inputs and outputs [14].

The linear map or matrix interpretation for a scalar is a one by one matrix, which is

11

2. Preliminaries

a complex number. Some instances of scalars presented in [14] are shown as follows:
α =√2= 2

= 1√
2

α π =√2eiαπ = 0
α = 1 + eiα

In this thesis, if a scalar is non-zero, then unless specifically stated, we will ignore

or drop it in our calculation. For example, if global scalars are ignored, then we have:

α == = 1

The justifications for ignoring global scalars can be found in [14] and [1].

Common gates in ZX-diagram Recall that we have introduced Hadamard

gates in section 2.1. In ZX-calculus, a Hadamard gate is represented by the

following notation:

It is well-known that a Hadamard gate can be expressed by spiders in ZX-calculus,

and the following equation (ED) defines one way to decompose the Hadamard

gate into spiders:

= π
2

π
2

π
2 (ED)

where the global scalar is ignored.

We give ZX notations for some other common gates as follows:

S gate ≡ π
2 T gate ≡ π

4

CZ gate ≡ CNOT gate ≡

Pauli Z ≡ π Pauli X ≡ π

SWAP gate ≡

Sometimes we call CZ gates as CZ wires, since a CZ gate in ZX-diagrams looks

like a wire connecting two vertices.

12

2. Preliminaries

Rewrite rules Another reason why ZX-calculus is useful for derivations about

qubit systems is that there are a set of rewrite rules allowing you to rewrite one

ZX-diagram into one of its equivalent forms. With the help of ZX-calculus, properties

of circuits and states can be proved in a diagrammatic way. Here we introduce

some important rewrite rules in ZX-calculus that we will use later in our proofs.

However, the rewrite rules introduced here are neither complete for ZX-calculus nor

independent to each other. For a comprehensive introduction to ZX-calculus rewrite

rules, see [1]. For formal discussions about the completeness of rewrite rules, see [20].

The rule of spider fusion is an important rewrite rule which will be often used

in this thesis. In ZX-calculus, two connected spiders in the same colour can fuse

together with their phases adding together. Diagrammatically, we have [14]:

β... ...

α

=...α+β

β... ...

α

=...α+β (f)

We use (f) to denote spider fusion rules. We may apply spider fusion rules without

mentioning in our proofs.

The following identity removal rule will also often be applied in this thesis

without mentioning:

= =

The following π-copy rules hold true:

=

...

π

...

π

π

π

...

α

...

-απ

π

=

...

π

...

π

π

π

...

α

...

-απ

π

(π)

The following copy rules hold true:

=

... ...

α =

... ...

α (c)

13

2. Preliminaries

The following colour changing rules hold true:

= ... αα = ... =α α ... (h)

The Hopf rule tells us a white spider and a grey spider connected by two identity

wires can disconnect as follows:

=

By rules of (h), (ED), (f) and (π), the following equation holds true [14]:

π
2 = -π2 (π2)

Clifford unitaries The Clifford unitaries are gates generated by compositions of

CNOT, Hadamard and S gates [14]. In ZX-calculus, Clifford gates can be represented

by ZX-diagrams that contain only phases that are multiple of π
2 [14].

2.3 ZH-calculus

ZH-calculus is another graphical language, which is presented by Miriam Backens

and Aleks Kissinger and it is viewed as a variant of ZX-calculus [16]. ZH-calculus

defines a superset of ZX-calculus and it extends the reasoning power of ZX-calculus

[14]. To define ZH-calculus, we first introduce the concept of H-box, a generalized

form of Hadamard gate. A H-box with m inputs and n outputs with parameter

a is defined as follows:

a nm ..
.

..
. :=

∑
ai1...imj1...jn |j1 . . . jn〉 〈i1 . . . im|

Therefore, a Hadamard gate is a special case of H-boxes, where the input and output

number are both 1 and the parameter value is −1. If the parameter value for a

H-box is −1, then we can drop the label inside the box:

nm ..
.

..
. = -1 nm ..
.

..
.

14

2. Preliminaries

For simplicity, we sometimes call a H-box with n inputs and m outputs as (n+m)-

arity H-box or (n + m)-ary H-box.

Similar to ZX-calculus, ZH-calculus consists of ZH-diagrams and rewrite rules. If

we drop any non-zero global scalars, then the generators of ZH-calculus are white

spiders and H-boxes, where white spiders have the same linear map interpretations as

in the ZX-calculus. Grey spiders are defined as one of the derived generators in ZH-

calculus and also have the same linear map interpretations as in the ZX-calculus. Any

ZX-diagram is a valid ZH-diagram, and any rewrite rules in ZX-calculus also holds

true in ZH-calculus. In addition, ZH-calculus defines some new rewrite rules. Here we

only introduce the following additional rewrite rules that will be used in this thesis:

=··
·

··
· nm ··
·

··
· nm (BA2)

=··
·

··
· nm ··
·

··
· nm (BA1)

a =··
·

··
· nm (HS1)aa ··
·

··
· nm

The rewrite rules introduced here are neither complete for ZH-calculus nor indepen-

dent to each other. For a formal discussions about the completeness of rewrite rules

of ZH-calculus, see [21]. The following equation holds true in ZH-calculus [21] [14]:

a =··
· n (H1)n··
·

a =··
· n (H2)π a ··
· n

= (CS1)

= (CZ1)

=i i
(CZ2)

15

2. Preliminaries

= (CZ3)

By equation (CZ2), the following gate is sometimes referred to as
√
CZ gate

for obvious reasons:

i

We give ZH notations for some other common gates as follows:

n ..
.CCZ gate ≡ CnZ gate ≡

The CCZ gate and the CnZ gate are both controlled unitaries, and the CnZ gate

generalizes both CZ gates and CCZ gates in the following way: the Ck+1Z gate is a

controlled-CkZ gate for k ∈ N+; when k = 1, the CkZ gate is a CZ gate.

For reasons explained above, we will treat all ZX-diagrams as ZH-diagrams and

use all rewrite rules that are introduced in section 2.2 and in this section.

For a detailed introduction to ZH-calculus, see [14].

2.4 Phase gadgets

A ZH-diagram of the following structure is referred as a phase gadget [14]:

...

α

where α ∈ [0, 2π) is the phase value of the gadget. We think of phase gadgets

as having the equal number input wires and output wires. Use P n
α to denote a

16

2. Preliminaries

phase gadget with n input wires, with α as the phase value. For example, a phase

gadget with two inputs and phase value π
2 and another phase gadget with three

inputs and phase value π
4 are shown as below:

P 2
π
2

:= π
2 P 3

π
4

:=
π
4

For simplicity, sometimes we call a phase gadget with two inputs as a binary phase

gadget, and a phase gadget with three inputs as a trinary phase gadget, and we

refer to P n
α as α phase gadget if it doesn’t cause any ambiguity.

A phase gadget P n
α can represent a function f of the form f(x1, ..., xn) = α · (x1⊕

...⊕xn), where x1, ..., xn ∈ B and ⊕ denotes a XOR operation [14]. This is because if

we input a state |x1...xn〉 into a phase gadget P n
α , then we get eiα(x1⊕...⊕xn)|x1...xn〉.

Two phase gadgets with the same number of inputs may fuse together as shown

by the equation (PG1) [14].
α β

...
=

α+ β

...

(PG1)

Phase gadgets can be decomposed to CNOT gates and a phase gate. For example,

equations (PG2) and (PG3) hold true [14].

α =

α

(PG2)

α

=

α

(PG3)

17

2. Preliminaries

We can easily derive from (PG2), (PG3), and rules of (f) and (π) that the following

equations (NPG2) and (NPG3) holds:

π

α = (NPG2)

π

−α

π

α

=

π

−α

(NPG3)

A π phase gadget is "unstable", since it "breaks down" to Pauli Z operations as

shown by equation (PGπ):

...

π

(π),(c),(f)=

π

π

π

...
(PGπ)

The phase gadget state We say that a state is a phase gadget state if all gates

on it are phase gadgets. The phase gadget state is a candidate for the resource

state in MBQC. We will introduce MBQC in section 2.9.

2.5 Graph states and Hypergraph states

In this section, we introduce two states that are well-known resource states in MBQC

introduced in section 2.9. A graph state is a family of states of the shape of a

simple undirected graph. To define a graph state, we start with a simple undirected

graph G = (V,E). Its corresponding graph state |G〉 can be constructed using the

following steps: (i) prepare a state | + ...+〉 where the number of qubits is equal

to |V |, (ii) for each edge (i, j) ∈ E, apply a CZ gate on qubits i and j. For an

example of graph states, see figure 2.2. Graph states are widely used in many

18

2. Preliminaries

(i) (ii)

Figure 2.2: An example graph state. (i) The graph state. (ii) The corresponding
undirected graph.

fields of quantum computing [5–7].

Hypergraph states generalize the concept of graph states. To define a hypergraph

state, we first need to define a hyperedge. Hyperedges are generalization of edges.

If we view a common edge as a binary tuple (x1, x2) where x1 and x2 are vertices,

then a hyperedge is defined as a tuple (x1, . . . , xp), where p ∈ N+ and x1, . . . , xp are

vertices. Note that a hyperedge may contain one vertex. A hypergraph is defined

as G =< V,E > where V is a set of vertices and E is a set of hyperedges. Given

a hypergraph G =< V,E >, we can construct its corresponding hypergraph state

|G〉 using the following steps: (i) prepare a state | + ...+〉 with the number of its

qubits equal to |V |, (ii) for each hyperedge (v1, . . . , vp) ∈ E, perform a CpZ gate on

qubits v1, . . . , vp. When p = 2, the hyperedge reduces to a common edge and the

CpZ operation reduces to a CZ gate. For an example of hypergraph states, see figure

2.3. For simplicity, we sometimes call a CCZ gate as a CCZ hyperedge. Readers can

(i) (ii)

Figure 2.3: An example hypergraph state. (i) The hypergraph state. (ii) The
corresponding hypergraph, where we use black circles to denote hyperedges.

find more details about graph states and hypergraph states in [4].

19

2. Preliminaries

2.6 Graphical Fourier theory

It is often useful to decompose a H-box into some low-level gates. We have seen

in section 2.2 that we can use equation (ED) to decompose a 2-ary H-box. In this

section, we introduce a method to decompose general H-boxes. Graphical Fourier

theory is proposed by Stach Kuijpers, John van de Wetering, and Aleks Kissinger

as a link between ZX-calculus and ZH-calculus [17]. We will only use the following

two special cases of Graphical Fourier theorems:

=
-π2

-π2
π
2 (FT2)

= −π
4

−π
4

π
4

−π
4

π
4

π
4

−π
4

(FT3)

In this thesis, we refer to (FT2) and (FT3) as graphical Fourier transforms, Fourier

transforms, or Fourier decompositions.

2.7 Universal computations

Universality of Computation is an important topic in the area of Quantum Computing.

One of the basic question in this topic is whether we can draw gates from some gate

set and construct an arbitrary unitary operation [22]. We recommend interested

readers to read [22] and [23] for a more detailed introduction to this topic.

Roughly speaking, a gate set is said to be universal if we can decompose an

arbitrary unitary operation into gates drawn from this gate set. This gate set is called

a universal gate set. In fact, there are different types of universality. For example,

readers can find definitions of strict universality and computational universality in

20

2. Preliminaries

[23], and the author in [24] is interested in encoded universality. However, since

universality is not our focus, we will ignore the difference among definitions of different

universality and simply treat all kinds of universality as the same. In this thesis, we

will use two universal gate sets: {CCZ,Hadamard} and {Hadamard, S, CNOT, T}.

The concept of universal gate set gives us a way to prove that universal universal

computations can be achieved: we first choose a universal gate set; then we show

that we can implement all the gates in this set and compose any number of gates

drawn from the set in any way we want. For example, in [10], in order to show

that universality can be achieved, the authors show that S gates, T gates, CNOT

gates, and Hadamard gates can be implemented, and they can compose gates from

the universal gate set {Hadamard, S, CNOT, T} in any desired manner if they tile

their constructions in a regular pattern.

2.8 Quantum circuit model

The quantum circuit model, or circuit model defines a straightforward method to

implement quantum computations. In this model, to implement any computation,

we first prepare qubits in a certain state, then we build a circuit composed by

quantum unitary gates and perform the circuit onto these qubits, and finally we

perform measurements on all or some of the resulting qubits. For an example of

circuit model see figure 2.4. Read [1] for a more detailed discussion about the

quantum circuit model.

2.9 Measurement-based quantum computation

The measurement-based quantum computation (MBQC) is one of the well-known

methods to achieve universal quantum computation. The one-way model [3] is the

most well-studied MBQC model, and we use this model as an example to introduce

MBQC. In contrast to the quantum circuit model introduced in section 2.8, MBQC

defines a totally different method to implement computations. In circuit model, we

21

2. Preliminaries

Prepare 3 qubits in |+〉

π
4

π
4

A circuit consisting of quantum gates

Measure some qubits

Figure 2.4: An example of circuit model computation.

start by preparing qubits in a fixed state and then perform a sequence of unitary

gates. Any computation in circuit model is implemented by building a circuit piece

by piece using individual gates. However, in MBQC, we start by preparing a highly

entangled resource state. The resource state is prepared in a predefined way and

thus does not depend on the computation to be implemented. For example, in the

one-way model, the resource state is a graph state which is prepared in a standard

process. After the resource state is prepared, we perform single-qubit measurements

on this resource state. Each qubit can be measured in a different basis, and how later

measurements are performed may depend on previous measurement outcomes. Since

measurements non-deterministically produce different outcomes, undesired outcomes

may appear. We call undesired outcomes as measurement errors. So, to implement a

deterministic computation, we need to correct errors produced in measurements.

For a toy example, consider preparing a three-qubit resource state entangled

by two CZ wires, and perform Pauli X and Z measurements on all of these qubits,

as illustrated in figure 2.5.

22

2. Preliminaries

1 2 3
→ aπ cπbπ

Figure 2.5: An toy example of MBQC. On the left-hand side of arrow, we prepare a three-
qubit resource state. On the right-hand side, we show the result after performing Pauli
Z measurements on qubits 1 and 3, and Pauli X measurement on qubit 2. a, b, c ∈ {0, 1}
depend on the measurement outcomes.

In MBQC model, a computation is implemented by cleverly planning how to

perform measurements on the resource state. The plan of how measurements are

performed is called the measurement pattern. We will introduce measurement

patterns in more details in section 2.9.3.

In MBQC, we are allowed to perform measurements of which measurement basis

live on the three principal axes of the Bloch sphere [14]. But in this thesis, we only

care about two special cases of these allowed measurements: Pauli X and Pauli Z

measurements. In section 2.9.1, we will discuss how we represent Pauli X and Z

measurements in ZH-calculus. In section 2.9.2, we will discuss how we represent

measurement errors in ZH-diagrams and how to correct them.

2.9.1 Single-qubit Pauli X and Z measurements in ZH-calculus

Performing a Pauli Z measurement on a qubit non-deterministically projects this qubit

onto one of the eigenstates {|0〉, |1〉}. We say that the outcome of Z-measurement is

0 if the measurement projects the qubit onto |0〉 and we say the outcome is 1 if the

measurement projects the qubit onto |1〉. Performing a Pauli X measurement on a

qubit non-deterministically projects this qubit onto one of the eigenstates {|+〉, |−〉}.

We say that the outcome of X-measurement is 0 if the measurement projects the

qubit onto |+〉 and we say the outcome is 1 if the measurement projects the qubit

onto |−〉. In this thesis, for a qubit q, terms like measure q in Z, measure q in

Z base, and perform a Z-measurement on q, are used to denote that we perform

a Pauli Z measurement on qubit q; terms like measure q in X, measure q in X

base, and perform a X-measurement on q, are used to denote that we perform a

Pauli X measurement on qubit q.

23

2. Preliminaries

Single-qubit Pauli X and Z measurements can be concisely depicted in ZH-calculus

[10]. In ZH-calculus, performing a Pauli X measurement on a qubit amounts to

composing an effect 〈a| to the qubit, where a ∈ {0, 1} is the measurement outcome;

performing a Pauli Z measurement on a qubit amounts to composing an effect(
b ·
(
〈−| − 〈+|

)
+ 〈+|

)
to the qubit, where b ∈ {0, 1} is the measurement outcome.

This is illustrated diagrammatically in figure 2.6.

X →
aπ

(i)

Z →
bπ

(ii)

Figure 2.6: Assume that qubits are prepared in |+〉. In (i), we perform a Pauli X
measurement on the qubit on the left-hand side of the arrow. In (ii), we perform a Pauli Z
measurement on the qubit on the left-hand side of the arrow. On the right-hand side of
the arrow, we draw the results of measurements. a ∈ {0, 1} and b ∈ {0, 1} depend on the
outcomes of measurements. In this diagram, we use the measurement pattern notation
defined in 2.9.3

In this thesis, lower case letters with or without subscript such as a, b, c, a1,

b2, c3 appearing in ZH-diagrams represent measurement outcomes, and they only

take value from the set {0, 1}.

2.9.2 Measurement errors in ZH-calculus

Since measurements introduce errors to our computations, we need to model mea-

surement errors produced in MBQC, and in order to implement deterministic

computations, we need ways to correct errors. We use terms measurement errors

and measurement byproducts to denote errors of measurements interchangeably.

Pauli X and Z errors As described in section 2.9.1, a Pauli X measurement

non-deterministically composes an effect 〈0| or 〈1| to a qubit. When the measurement

outcome is 1 and thus the introduced effect is 〈1|, we say that we produce a Pauli Z

error. Similarly, a Pauli Z measurement non-deterministically composes an effect

〈+| or 〈−| to a qubit. When the measurement outcome is 1 and thus the introduced

24

2. Preliminaries

effect is 〈−|, we say that we produce a Pauli X error. Therefore, in ZH-calculus,

the Pauli Z error and Pauli X error can be depicted as

Pauli Z error:= aπ Pauli X error:= bπ

where a ∈ Z and b ∈ Z depend on outcomes of measurements. If a = (2k + 1)

where k ∈ Z, then it means there is a Pauli Z error; otherwise there is no Pauli Z

error. If b = (2k + 1) where k ∈ Z, then it means there is a Pauli X error; otherwise

there is no Pauli X error. Sometimes we also use a orange-dashed-line notation to

denote Pauli X and Z errors as illustrated in figure 2.7.

aπ:= := bπ

(i) (ii)

Figure 2.7: Orange dashed lines denote measurement errors. The part of diagram depicted
by orange dashed line will appear if an error is produced. In (i), a Pauli Z error is depicted
by a dashed orange H-box with 1 wire. In (ii), a Pauli X error is depicted by two connected
dashed orange H-boxes.

This notation of orange dashed lines is used because the orange-dashed-line

notation and phase-spider notation are equivalent: If there is no error and thus the

part of diagram depicted by orange dashed lines will not appear, then obviously

these two representation are equivalent; otherwise there is an error and thus the

orange-dashed-line part appears, then we have

=

=

π

π

(h)=
π

(f)= π

(f)= π

indicating that these two representations are equivalent.

25

2. Preliminaries

S errors We define a S error to be the error taking the form of a S gate.

a · π2

where a ∈ Z depends on measurement outcomes. If a = 2k + 1 where k ∈ Z

then it means there is a S error; otherwise there is no S error. However, if the

S gate is the computation we intend to implement, then the S gate should not

be treated as an error anymore.

Multi-qubit errors Pauli X and Z errors and S errors are single-qubit errors, since

they only have effect on some single qubit. However, in MBQC, multi-qubit errors

might also be produced. One common multi-qubit errors are CZ errors illustrated

in figure 2.8. In this thesis, we only use dashed lines to depict CZ errors.

1 2

Figure 2.8: The CZ error on qubits 1 and 2 is depicted by a CZ gate depicted in orange
dashed lines, the appearance of which depends on corresponding measurement outcomes.

Another multi-qubit error is the phase gadget error, which is a measurement

error taking the form of a phase gadget, as illustrated in figure 2.9.

1 2

a · π2

(i)
1 2

b · π2

(ii)
3

Figure 2.9: In (i), we depict a binary π
2 phase gadget error on qubits 1 and 2. In (ii), we

depict a trinary π
2 phase gadget error on qubits 1, 2, and 3. a ∈ Z and b ∈ Z depend on

measurement outcomes. In (i), if a = (2k + 1) where k ∈ Z, then it means there is a binary
π
2 phase gadget error; otherwise there is no phase gadget error.

By rules of ZH-calculus and equation (PG1), we can easily show that a −π
2

phase gadget error is equal to a π
2 phase gadget error up to Pauli Z errors. So,

26

2. Preliminaries

when we have X and Z Pauli errors and ±π
2 phase gadget errors, we only need

to consider π
2 phase gadget error.

Correction of measurement errors One technique to correct Pauli X and Z

measurement errors on graph states is called feed-forward [1]. Feed-forward is the

process where we push Pauli X and Z errors along edges of the graph state until

they only appear on the output wires and then correct these errors by performing

corresponding gates. For example, in the following figure, we illustrate the process

where we push a Pauli Z error along the graph state to output wires:

aπ

1
...

 output wires (h)= aπ

(π)= aπ

aπ (h)=
aπ

aπ

Then we can apply the process of post-selection to correct errors on output wires [1].

There are two reasons why the technique of feed-forward succeeds: (i) we only

deal with Pauli X and Z errors, and (ii) the edges of graph states are CZ wires, and

by the rules of (h), (π), (f), we can push around Pauli X and Z errors in graph

states without producing errors other than Pauli X and Z errors. Issues can occur

when directly applying this technique to correct errors in a resource state which is

not a graph state or to correct errors other than Pauli X and Z errors. For instance,

CZ errors cannot pass through edges in a graph state:

6=

For another instance, when a Pauli X error passes through a CCZ hyperedge,

we produce a CZ error:
aπ

=

aπ

27

2. Preliminaries

The proof for the above equation is part of the proof for lemma 3.1.5.

However, it is still possible to apply the idea of feed-forward to correct non-Pauli

errors in a resource state that is not a graph state. One way to achieve that is to

view the resource state as being composed by small fragments. Connections between

fragments are identity wires, and each fragment has inputs and outputs:

Resource state =
F

F

F

F

...

...

...
...

For each fragment, we ensure that it takes Pauli X and Z errors coming from its

input wires and after measurements on this fragment are performed, only Pauli

X and Z errors are produced on its output wires. The measurement performed

on a fragment can depend on the Pauli X and Z errors on its input wires. This

way, we ensure errors passed between fragments are Pauli X and Z errors, which

enables us to push around Pauli X and Z errors in the resource state, and we use

the idea of feed-forward to push all Pauli X and Z errors to output wires of MBQC

and then correct them. In section 2.9.3, we will see how this idea of feed-forward

can be included in measurement patterns.

2.9.3 Measurement patterns in ZH-calculus

Performing measurements is essential to implement computations in MBQC model,

so we need measurement patterns to define how measurements are to be performed

on a resource state. Readers can refer to [25] for a formal and more detailed

description of measurement patterns. In this thesis, we only consider single-qubit

Pauli X and Z measurements introduced in section 2.9.1, and we will use a simple

notation to represent measurement patterns in ZH-calculus: In a ZH-diagram, we

write a letter M ∈ {Z,X} on some qubit to denote that we will perform a Pauli

M measurement on this qubit.

28

2. Preliminaries

Instead of defining measurement patterns on the whole resource state, we usually

define measurement patterns on fragments of the resource state. In a measurement

pattern defined on a fragment, we should set input qubits and output qubits. Each

input qubit has an input wire and each output qubit has an output wire. These input

and output wires connect to other parts of the resource state, therefore input qubits

and output qubits will not be measured in a measurement pattern. In diagrams,

these input and output wires are usually shown as free or dangling edges, but we omit

them if no confusion is caused. For simplicity, we refer to input qubits as inputs and

output qubits as outputs. For instances of measurement patterns, see figure 2.10.

1 2 3
(i)

Z

1 2 3
→

(ii)

bπ

X

1 2 3
→

(iii)

bπ

Z X

1 2 3
→

(iv)

aπ cπ

Figure 2.10: In (i), we have a three-qubit system with qubits 1, 2, and 3 where there are
a CZ edge between qubits 1 and 2 and another CZ edge between qubits 2 and 3. In (ii),
on the left-hand side of the arrow we define a measurement pattern on the system in (i),
where we set qubit 1 as the input and 3 as the output and we measure qubit 2 in Z. In
(iii), on the left-hand side we define another measurement pattern on on the system in (i),
where we set qubit 1 as the input and 3 as the output and we measure qubit 2 in X. In
(iv), on the left-hand side we define another measurement pattern on on the system in (i),
where qubit 2 is both the input and the output and we measure qubit 1 in Z and qubit 3
in X. On the right-hand side of the arrow in (ii), (iii), and (iv), we calculate the result of
the measurement pattern in the way described in section 2.9.1.

For a n-input-m-output measurement pattern MP1, we say that MP1 imple-

ments or achieves a n-input-m-output operation G1 up to errors if the following

29

2. Preliminaries

equation holds true:

MP1...n

 ...

m = G1...n

 ...

m ...
errors

m
Measurement errors are introduced in section 2.9.2. For an example, the measurement

pattern defined in figure 2.11 implements an identity wire, up to Pauli errors.

Z

1 2
(h),(f)=

aπ=
aπ

Figure 2.11: On the leftmost end of the equation, we define a measurement pattern on
a two-qubit system where we set qubit 2 as both the input and the output. Calculating
this measurement pattern we get the the identity wire on the rightmost end, up to Pauli Z
errors.

Now that we have seen how to define measurement patterns on fragments, it is

time to discuss how to define a MBQC model that uses the idea of feed-forward

to correct errors. To define such a MBQC model, we need to take Pauli X and Z

errors into considerations in measurement patterns. We say that a n-input-m-output

measurement pattern MP2 implements a n-input-m-output gate G2 and admits

feed-forward if the following equation holds true:

MP2...n

 ...

m = G2...n

 ...

m ...

mPauli
X and Z
errors

Pauli
X and Z
errors

For instance, the following measurement pattern, where qubit 1 is the input and

qubit 2 is the output, implements a CZ wire between qubits 1 and 2, and ad-

mits feed-forward:

X Z

1 2

π
4

30

2. Preliminaries

Since we have
cπ

aπ bπ

dπ

(h),(f)=π
4

bπcπ

aπ

dπ

π
4

(c),(f)=

aπ bπcπ

aπ

dπ

π
4

(f)= (a+ c)π bπdπ (π)= (a+ c)π bπdπ (h)= (a+ c)π (b+ d)π

31

3
Hypergraph MBQC Models

In this chapter, we use ZH-calculus to investigate and justify protocols of two

hypergraph state MBQC models. One of the models is the GGM state based MBQC

model proposed in [12] by Gachechiladze et al., where we use GGM state to call the

resource state in this model. Another model is the Union Jack state based MBQC

model proposed in [11], where the Union Jack state is the resource state. Although

in [12] and [11], authors have given their justifications for proposed protocols, our

diagrammatic proofs in ZH-calculus are more concise, intuitive, and easier to verify.

In section 3.1.1, we first introduce a hexagon notation and then use it to present

the GGM state. In section 3.1.2, we prove useful lemmas in ZH-calculus. In section

3.1.3, we use ZH-calculus to describe and justify measurement patterns defined on

fragments of the GGM state. In section 3.1.4, we use ZH-calculus and results in section

3.1.3 to describe and justify the protocol of the GGM state based MBQC model.

We briefly introduce the Union Jack state in section 3.2.1. Based on results in [18],

in section 3.2.2 we use ZH-calculus to show that the CCZ gate can be implemented by

the measurement pattern proposed in [11], which serves as the essential evidence for

the fact that universality can be achieved by Union Jack state based MBQC model.

32

3. Hypergraph MBQC Models

3.1 GGM state based MBQC model

3.1.1 The GGM state

The hexagon notation We introduce the following hexagon notation illustrated

in figure 3.1. This hexagon notation is similar to the box notation introduced in

[12]. The reason why we use hexagons instead of boxes is to distinguish this notation

from that of a H-box. In figure 3.1 (a), a four-qubit hypergraph state where qubits

1 2 3

4

:=

4

1 2 3

4

:=

4 5 6

5 6

(a) (b)

Figure 3.1: Hexagon notation in the GGM state. (a) A four-qubit hypergraph state
with three CCZ hyperedges. (b) A six-qubit hypergraph state with nine CCZ hyperedges.
Different colours are used to make the connections in the diagram clearer, and they have no
syntactic meanings. On the left-hand side, three qubits and corresponding CCZ hyperedges
are hidden/encapsulated inside the hexagon.

are numbered from 1 to 4 with three CCZ hyperedges (1, 2, 4), (1, 3, 4), (2, 3, 4) is

denoted by a hexagon connected to qubit 4. Each of these hyperedges include qubit

4 and two out of the three qubits 1, 2, 3. In figure 3.1 (b), a six-qubit hypergraph

state where qubits are numbered from 1 to 6 with nine CCZ hyperedges (1, 2, 4),

(1, 3, 4), (2, 3, 4), (1, 2, 5), (1, 3, 5), (2, 3, 5), (1, 2, 6), (1, 3, 6), (2, 3, 6) is denoted by

a hexagon connected to qubits 4, 5, and 6.

We write a symbolM ∈ {Z,X} on the hexagon notation to define a measurement

pattern where qubits hidden inside the hexagon are measured in Pauli M and the

three qubits attached on the outside are outputs or output qubits. Recall from

section 2.9.3 that setting some qubit as the input or the output in a measurement

pattern implies that this measurement pattern is defined on a fragment of a resource

state, and when a qubit is set as the input or the output in a measurement pattern,

this qubit will not be measured.

33

3. Hypergraph MBQC Models

For example, in figure 3.2, qubits 4, 5, 6 are outputs, and qubits 1, 2, 3 are all

measured in Pauli X. For simplicity, when there is a symbol M ∈ {Z,X} on a

X X X

1 2 3

4

:=

4 5 6

5 6

X

Figure 3.2: A measurement pattern on a six-qubit hypergraph state, where qubits 4, 5, 6
are outputs, and qubits 1, 2, 3 are measured in Pauli X. Here in the diagram, notations of
measurement patterns defined in section 2.9.3 are used.

hexagon notation, we say that this hexagon is measured in M or this hexagon

is measured in Pauli M .

GGM state With the help of hexagon notations, the ZH-diagram of the GGM

state is presented in figure 3.3.

Figure 3.3: The GGM state. The hexagon notation is used.

34

3. Hypergraph MBQC Models

3.1.2 Lemmas

In this section, we prove a couple of lemmas that will be used in sections 3.1.3 and

3.1.4.

Lemma 3.1.1. For a, b, c ∈ {0, 1}, if a + b + c ∈ {0, 1, 3}, then the equation 3.1

holds true; if a+ b+ c = 2, then the equation 3.2 holds true.

aπ cπ

bπ

=
(a+ b+ c)π

(3.1)

aπ cπ

bπ

= 0 (3.2)

Proof. In this proof, we always ignore global scalars. Let |ψ〉 be the state on the

left-hand side of the equation 3.1 and 3.2, then we have:

|ψ〉 = |0〉 ⇐⇒ 〈0|ψ〉 = 1 and 〈1|ψ〉 = 0

|ψ〉 = |1〉 ⇐⇒ 〈1|ψ〉 = 1 and 〈0|ψ〉 = 0

|ψ〉 = 0 ⇐⇒ 〈1|ψ〉 = 0 and 〈0|ψ〉 = 0

By definition of matrix interpretation of states, we have (ignoring global scalars):

|0〉 = , |1〉 =
π

So, we can calculate the value of 〈0|ψ〉 as follow:

35

3. Hypergraph MBQC Models

(BA1)=
aπ cπ

bπ

aπ cπ

bπ

(BA2)= aπ cπ

bπ

(f)=
aπ

bπ

cπ =
1 if a+ b+ c = 0

0 if a+ b+ c > 0=


if a+ b+ c = 0

π if a+ b+ c > 0

In the last step, we ignore global scalars and use the following fact:

= 1, π = 0

Similarly, we can calculate the value of 〈1|ψ〉 as follow:

(π),(c)=
aπ cπ

bπ

π

aπ cπ

bπ

π

π

π (h)=
aπ cπ

bπ

π π π

=
aπ cπ

bπ

(HS1)= aπ cπ

bπ

(FT1),(f)=
(a− 1)π (c− 1)π

(b− 1)π

π
2

π
2

π
2

(π2),(f),(h)=

−π
2

−π
2

−π
2

(a− 1)π (c− 1)π

(b− 1)π

(h),(π),(f)=

(a+ b+ c− 3)π

π
2 (−1 + (−1)b + (−1)c)

(Hopf rule),(f),(h)=

(a+ b+ c− 3)π

π
2 (−1 + (−1)b + (−1)c)

=
0 if a+ b+ c = 0 or 2

1 if a+ b+ c = 1 or 3

36

3. Hypergraph MBQC Models

Therefore, if a+ b+ c = 0, then we have 〈0|ψ〉 = 1 and 〈1|ψ〉 = 0, which indicates

|ψ〉 = |0〉 =
(a+ b+ c)π

=

If a+ b+ c = 1 or 3, then we have 〈0|ψ〉 = 0 and 〈1|ψ〉 = 1, which indicates

|ψ〉 = |1〉 =
π (a+ b+ c)π

=

If a+ b+ c = 2, then we have 〈0|ψ〉 = 0 and 〈1|ψ〉 = 0, which indicates

|ψ〉 = 0.

�

Lemma 3.1.2. The equation 3.3 holds true.

=

(3.3)

Proof.

= (BA1)=

= (BA2)= (f)=

(f)= (CS1)= (CZ1)=

37

3. Hypergraph MBQC Models

�

Lemma 3.1.3. The equation 3.4 holds true.

π

= π

(3.4)

Proof.

π

(FT2)=

π

π
4

π
4

π
4

−π
4

−π
4

−π
4

−π
4

(h),(f),(PG2)=

−π
4

−π
4

π
4

−π
4

−π
4

−π
4

−π
4

π

(PG3),(π)=

−π
4

−π
4

π
4

π
4

−π
4

π
4

−π
4

π

(PG1),(f)=

−π
4

−π
4

−π
4

π
4

−π
2

π
4

−π
2

π

π
4

π
4

π
2

(FT2)=

−π
2

−π
2

π

π
2

(FT1)=

π

(Lemma 3.1.2)=
π (f),(h)=

π

In the proof above, we first use rule of (FT2) decompose the 3-ary H-box on the

left-hand side of the equation and we get a bunch of phase gadgets. Then, by (π)

38

3. Hypergraph MBQC Models

and (NPG), we pass the 2-ary X-spider of phase π through all these phase gadgets

and flip their phases. By spider fusion, phase gadgets can freely pass through each

other. By phase gadget fusion rule (PG1), we decompose a π
4 phase gadget into a π

2

phase gadget and another −π4 phase gadget. Spider fusion allows us to split a spider

of phase −π4 into a spider of phase π
4 and another with −π2 . Next, apply (FT1) and

(FT2) to compress phase gadgets and X-spiders into H-boxes, and apply the equation

in lemma 3.1.2 to remove the 3-ary H-box. Finally, we fuse spiders together. �

Lemma 3.1.4. The equation 3.5 holds true.

=
(3.5)

Proof.

(h)= =

(BA1)= (h)= (f)=

(f)=
(h)=

�

The next lemma will be used in the proof of lemma 3.1.9.

39

3. Hypergraph MBQC Models

Lemma 3.1.5. The equation 3.6 holds true.

π π

= (3.6)

Proof. From the proof of lemma 3.1.3, we know that when a Pauli-X operation passes

through a CCZ gate, we will get another CZ gate:

π

=

π

Combining this with the fact that

π π = 2π =

we can easily conclude that the equation 3.6 holds true. �

3.1.3 Measurement patterns

In this section, we discuss measurement patterns defined on fragments of the GGM

state.

Double circle notation In this chapter, we draw a qubit in a resource state as

a double circle to mean that there is a Hadamard gate on this qubit:

We also make this double circle notation compatible with the notation of Pauli X

and Z measurement patterns defined in section 2.9.3 in the following way:

aπ

:=X

aπ

:=Z

40

3. Hypergraph MBQC Models

When there is a multi-qubit gate on a double circle qubit and another qubit, the

Hadamard gate is always the first gate to be performed on the double circle qubit:

1 2 1 2

1

2
3

1

2 3

One of the most important features of GGM state is that we can deterministically

obtain CZ gates using Pauli X measurements, which is described in more detail

in lemma 3.1.6 and lemma 3.1.7.

Lemma 3.1.6. As shown in figure 3.4, by performing the measurement pattern

defined on the left-hand side of the arrow, we implement two CZ wires and a

Hadamard gate on the middle output qubit, up to Pauli Z errors.

X

4 5 6

→

Figure 3.4: On the left-hand side of the arrow, we define a measurement pattern using
the hexagon notation introduced in section 3.1.1. Qubits 4, 5, 6 are outputs. On the
right-hand side we give the result of calculating this measurement pattern. The orange
dashed lines is the notation introduced in section 2.9.2 depicting byproducts or errors.

Proof. First, we expand the hexagon notation on the left-hand side by its definition,

and then calculate the measurement pattern using the method introduced in section

41

3. Hypergraph MBQC Models

2.9.3.

X

4 5 6

X X X

1 2 3

4 5 6

(definition of hexagon notation)=

(definition of X measurement)=

aπ bπ cπ

where a, b and c are measurement outcomes, and a, b, c ∈ {0, 1}. Next, we use the

spider fusion rule to split the state into roughly three parts.

(f)=

aπ bπ cπ

aπ bπ cπ

In each part, we apply the rule of (BA2).

(BA2)=

aπ bπ cπ

aπ
bπ

cπ

Then we again use spider fusion to combine three parts together

(f)=

aπ
bπ cπ

aπ cπ

bπ

42

3. Hypergraph MBQC Models

Continue to apply other rules of ZH-calculus and lemma 3.1.1, and we have

(BA1)=

aπ cπ

bπ

aπ cπ

bπ

(Lemma 3.1.1)=

(a+ b+ c)π

(f)=
(a+ b+ c)π

(h),(f)= (a+ b+ c)π
(h)=

(a+ b+ c)π
(f)=

(a+ b+ c)π

Here in the last state of the above derivations, we see that there is a Pauli Z error

on the middle qubit. So, rewrite this error into dashed line representation, and we

get our target state:

�

Lemma 3.1.7. As shown in figure 3.5, by performing the measurement pattern

defined on the left-hand side of the arrow, we implement two CZ wires and a

Hadamard gate on the middle output qubit, up to Pauli Z errors and CZ errors.

X

4 5 6

→

Figure 3.5: On the left-hand side of the arrow, we define a measurement pattern where
qubits 4, 5, 6 are outputs. The notation introduced in section 3.1.1 is used. On the
right-hand side we give the result of calculating this measurement pattern. The orange
dashed lines is the notation introduced in section 2.9.2 depicting byproducts or errors.

Proof. This lemma follows immediately from lemma 3.1.6, lemma 3.1.2, and lemma

3.1.3. First, apply lemma 3.1.6 to calculate the result of measuring the hexagon in

43

3. Hypergraph MBQC Models

Pauli X. If no Pauli Z error is produced in this measurement on the hexagon, then

apply (h) and lemma 3.1.2 to the result and we get:

(h)=

(lemma 3.1.2)=
(h)=

Otherwise, a Pauli Z error is produced in this measurement on the hexagon, then

apply (f), (h), and lemma 3.1.3 to the result and we get:

(f),(h)=

π

=

π

(lemma 3.1.3)= π
(h)= π

(f)=

This case, we have a Pauli Z error and a CZ error. Rewrite errors into dashed line

representation, then we get our target state. �

If we measure the hexagon in Z, then all relevant CZ wires are disconnected,

which is explained in more detail in the following lemma.

Lemma 3.1.8. By performing the measurement pattern defined in figure 3.6, we

disconnect all CZ wires and produce Pauli Z errors.

44

3. Hypergraph MBQC Models

Z

4 5 6

→

Figure 3.6: On the left-hand side of the arrow, we define a measurement pattern where
qubits 4, 5, 6 are outputs. The notation introduced in section 3.1.1 is used. On the
right-hand side we give the result of calculating this measurement pattern. The orange
dashed lines is the notation introduced in section 2.9.2 depicting byproducts or errors.

Proof.

Z

4 5 6

Z Z Z

1 2 3

4 5 6

(definition of hexagon notation)=

(definition of Z measurement)=

aπ bπ cπ

(π),(c)=
aπ

bπ

cπ

aπ aπ
aπ

aπ aπ

bπ bπ bπ bπ bπcπ

cπ

cπ

cπ

cπ

(H1),(H2)=
g(a, b, c)π g(a, b, c)π g(a, b, c)π

where g(a, b, c) ∈ {0, 1} and the value of g(a, b, c) depends on a, b, and c. Rewrite

errors into dashed line representation, then we get our target state. �

In the next lemma, we show that we can implement a nearest neighbuor CCZ

gate by performing Pauli X and Z measurements on a fragment.

Lemma 3.1.9. The measurement pattern defined in figure 3.7 implements a CCZ

gate on qubits 7, 8, and 9, up to CZ and Pauli Z errors.

Proof. By definition of measurements, lemma 3.1.8, and rules of ZH-calculus, we

45

3. Hypergraph MBQC Models

have:

bπaπ cπ

fπ

eπ

dπ

7

8

9

XX X

Z
ZZ

4 5 67

8

9

Z

1 2 3
=

(definition of measurement)
(lemma 3.1.8)

(f),(h)=

bπaπ cπ

fπ

eπdπ
7

8

9

(f),(h),(write errors into spider form)=

(b+ b′)π(a+ a′)π (c+ c′)π

(f + f ′)π

(e+ e′)π(d+ d′)π
7

8

9

(b+ b′)π(a+ a′)π (c+ c′)π

(f + f ′)π

(e+ e′)π(d+ d′)π
(h)= (π),(f)=

(f + f ′)π(f + f ′)π

(e+ e′)π

(e+ e′)π

(d+ d′)π

(d+ d′)π

(a+ a′)π

(b+ b′)π

(c+ c′)π

(f)=
(f + f ′)π

(f + f ′)π

(e+ e′)π

(e+ e′)π

(d+ d′)π

(d+ d′)π

(a+ a′)π

(b+ b′)π

(c+ c′)π

(lemma 3.1.5)=

In the last step of derivations, we apply lemma 3.1.5 three times, and rewrite errors

into dashed line notation. �

46

3. Hypergraph MBQC Models

XX X

Z
ZZ

4 5 67

8

9

Z

1 2 3

→

Figure 3.7: On the left-hand side of the arrow, we define a measurement pattern where
qubits 7, 8, 9 are both inputs and outputs. The hexagon notation introduced in section
3.1.1, the notation of double circle defined in the beginning of this section, and the notation
of measurement patterns in section 2.9.3 are used. On the right-hand side we give the
result of calculating this measurement pattern. The orange dashed lines is the notation
introduced in section 2.9.2 depicting byproducts or errors.

3.1.4 Correctness of the protocol

In this section, we show that the protocol of GGM state based MBQC model

is correct. The protocol includes two essential parts: the implementation of the

hexagonal lattice state in figure 3.15 and the implementation of the nearest neighbour

CCZ gate. These two implementations are done by performing Pauli X and Z

measurements on the GGM state.

The first step The first step of the protocol is to measure some hexagons in X,

as shown in figure 3.8. In the figure 3.8, all the hexagons, to which three qubits

connecting do not belong to the same CCZ hyperedge, are measured in X.

By lemma 3.1.6, the resulting state after performing these measurements is shown

in figure 3.9. Getting this state is important, since we will implement all gates we

need by performing Pauli X and Z measurements on this state.

Implementation of hexagonal lattice Now we will show how to get the lattice

state in figure 3.15 step by step.

First, we need to measure the rest of hexagons in the state in figure 3.9 in Pauli

X, as shown in figure 3.10. By lemma 3.1.7, after these measurements, we get

the state in figure 3.11.

47

3. Hypergraph MBQC Models

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 3.8: The first step of GGM measurement protocol. Some hexagons are measured
in X.

Next, to get one step closer to the hexagonal lattice, we consider transforming

each unit in the state in figure 3.11. By lemma 3.1.4, we transform each unit of this

state to an equivalent shape as shown in the following equation:

=
(lemma 3.1.4)

On the right-hand side of the above equation, the central qubit is connected to

four surrounding qubits by CZ wires.

48

3. Hypergraph MBQC Models

Figure 3.9: The resulting state after performing the first step of the GGM state based
measurement protocol. The double circle qubit notation defined in section 3.1.3 is used.

By applying this transformation to each unit of the state in figure 3.11, we

get the state in figure 3.12.

The final step is to perform measurements in Pauli Z and X so as to shape the state

in figure 3.12 into the hexagonal lattice state in figure 3.15. We use pink to colour

qubits that are to be measured in Pauli Z, and green to colour qubits that are to be

measured in Pauli X, as shown in figure 3.13. Among all the coloured qubits in the

figure above, those qubits on which there is a Hadamard gate are coloured with green.

After performing Pauli X and Z measurements on coloured qubits, by method

of calculating measurements introduced in section 2.9.3, we get the state in figure

3.14. In figure 3.14, we write measurement errors in orange-dashed-line notations.

Then by applying rules of (h), (π), (f), and (c), the state in figure 3.14 is equal

49

3. Hypergraph MBQC Models

to the hexagonal lattice in figure 3.15, up to Pauli Z and CZ errors, as largely

explained by the following derivations:

(no errors produced)= (c)= (h)=

(errors produced)=

π

(π),(c)=
π π

π π
(h)=

π π

π π

(no errors produced)= (h),(c)= (h)=

(errors produced)=

π

(h),(c),(π)=
π π

(h)= π π

50

3. Hypergraph MBQC Models

X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 3.10: Performing X measurements on all the hexagons in the state in figure 3.9.

Figure 3.11: The resulting state after performing X measurements on all the hexagons in
the state shown in figure 3.9. The double circle qubit notation defined in section 3.1.3 is
used.

51

3. Hypergraph MBQC Models

Figure 3.12: The resulting state after transforming each unit in the state 3.11.

Figure 3.13: Colouring qubits in the state in figure 3.12 that are to be measured in Pauli
Z and X: pink is used to colour qubits that are to be measured in Pauli Z; green is used to
colour qubits that are to be measured in Pauli X.

52

3. Hypergraph MBQC Models

Figure 3.14: The resulting state after performing Pauli X and Z measurements defined
in figure 3.13.

Figure 3.15: The hexagonal lattice state that can achieve any Clifford operation via X
and Z measurements.

53

3. Hypergraph MBQC Models

Implementation of nearest neighbour CCZ gates By lemma 3.1.9, we can

implement nearest neighbour CCZ gates, up to CZ an Pauli Z errors, by performing

Pauli X and Z measurements on the state in figure 3.9, since the measurement pattern

given in lemma 3.1.9 is exactly defined on a fragment of this state.

Proposition 3.1.10. The GGM state based MBQC protocol is correct.

Proof. The GGM state based MBQC protocol is correct, since we have shown that

we can implement the hexagonal lattice state in figure 3.15 and nearest neighbour

CCZ gates by this protocol. �

Based on our discussions, we can also easily verify the following three features

of the GGM model included in theorem 1 in [12]:

1) We can achieve universal computations using only Pauli measurements. We use

the idea introduced in section 2.7 to show this fact. We choose {CCZ,Hadamard} as

the universal gate set. It has been shown that we can implement the hexagonal lattice

in figure 3.15 up to CZ errors and Pauli Z errors. By [9], any Clifford gate can be

implemented in parallel by Pauli measurements on the state in figure 3.15, up to Pauli

X and Z errors. Since the SWAP gate and the Hadamard gate are both Clifford gates,

it follows immediately that we can implement SWAP and Hadamard gates up to Pauli

X and Z and CZ errors. In addition, we have also shown that nearest neighbour CCZ

gates can be implemented up to Pauli Z and CZ errors. Combining nearest neighbour

CCZ gates with SWAP gates, we can implement CCZ gates on arbitrary three qubits

as illustrated in figure 3.16. Then, let the information flows from the bottom to

the top in the GGM state, we can implement CCZ gates and Hadamard gates and

compose them in any manner. Therefore, universal computations can be achieved.

2) The scheme is deterministic. This fact is now obvious. Errors produced in this

protocol are Pauli X and Z and CZ errors. Pauli X and Z errors can pass through

Hadamard gates by rule (h) producing only Pauli X and Z errors. In proof for lemma

3.1.5 we see a Pauli X error can pass through a CCZ gate and produce a CZ error. CZ

errors are Clifford and thus can be corrected by Pauli measurements on the hexagonal

54

3. Hypergraph MBQC Models

1

2

3

4

5

=

1

2

3

4

5

Figure 3.16: We can use SWAP gates to "slide" the nearest neighbour CCZ gate onto
our desired qubits and use additional SWAP gates to cancel out all SWAP gates. Five
qubits 1, 2, 3, 4, and 5 are prepared. To achieve a CCZ gate on qubits 1, 3, and 5 on the
right-hand side, we compose a nearest neighbour CCZ gate on 1, 2, and 3 and multiple
SWAP gates on the left-hand side.

lattice state in figure 3.15. Therefore, we can use the technique of feed-forward

introduced in section 2.9.2 to correct errors to implement deterministic computations.

3) All CCZ gates and SWAP gates can be implemented in parallel. This fact

holds true, because measurements to implement CCZ gates or SWAP gates are

independent to each other, and Pauli X and Z errors and CZ errors can pass through

SWAP or CCZ gates without producing errors other than Pauli X and Z errors and

CZ errors. For justifications of errors passing through gates: Obviously Pauli Z

and X errors can freely pass through SWAP gates, and by (f) Pauli Z errors can

freely pass through CCZ gates; in proof for lemma 3.1.5 we see a Pauli X can error

passes through a CCZ gate and produce a CZ error.

55

3. Hypergraph MBQC Models

3.2 Union Jack state based MBQC model

3.2.1 Introduction to the Union Jack state

The ZH-diagram of the Union Jack state is presented as follows:

...

...

...

...

The Union Jack state is constructed by tiling the following small bricks up:

The CCZ hyperedges in the Union Jack state are arranged in a regular pattern.

We can see that the construction of Union Jack state is much simpler and more

elegant compared with that of a GGM state. However, the justification for the

construction of Union Jack state is profound. The idea of symmetry protected

topological order is used in the construction of the Union Jack state, and it is also

responsible for the fact that universal computations can be achieved using single-qubit

Pauli measurements on this state [11]. We recommend interested readers to read

[11] for a detailed description of the Union Jack state MBQC protocol.

3.2.2 Correctness of the protocol

One essential part of the protocol is the implementation of CCZ gates. CCZ gates

belong to the universal gate set {CCZ, Hadamard} and thus serve as an essential

evidence for universality of the Union Jack state model. Now we use ZH-calculus to

56

3. Hypergraph MBQC Models

show that CCZ gate can be implemented by Pauli measurements on the Union Jack

state. The measurement pattern implementing a CCZ gate is illustrated in figure

A.1. It has been shown in [18] using ZH-calculus that the gate UI and the SWAP

gate can be implemented by performing corresponding measurement patterns on

fragments of Union Jack state. So, we only need to prove that by composing UI and

the SWAP gates in the way shown in figure A.1, we implement a CCZ gate.

Proposition 3.2.1. The measurement pattern in figure A.1 implements a CCZ gate,

up to CZ errors.

Proof. Translate the measurement pattern in figure A.1 into a ZH-diagram and we

get:

Q1

Q2
i

i

i

i

Q3

i

i

We can roughly divide this diagram into the left part, the middle part and the right

part according to the distribution of gates:

Q1

Q2
i

i

i

i

Q3

i

i

the left part the middle part
the right part

By connections of wires and spider fusion law (f), we can easily "slide" gates in the

middle and the right part to the left part of the diagram. For example, the second

57

3. Hypergraph MBQC Models

√
CZ gate in the middle part "slide" to the left part in the following way:

After sliding all the gates in the middle and the right part to the left part, we get:

Q1

Q2
i

i

i

i

Q3

i

i

By equations (CZ1), (CZ2), and (CZ3), two
√
CZ gates merge into one CZ gate,

two CZ gates cancel out with each other, and two CCZ gates cancel out with each

other. In addition, we have the following fact:

Q1

Q2

Q3

=

Q1

Q2

Q3

Therefore, we conclude that the measurement pattern in figure A.1 implements a

CCZ gate, up to CZ errors. �

58

4
From Hypergraph to Phase Gadget MBQC

In this chapter, we investigate the link between hypergraph and phase gadget state

MBQC. We have seen in chapter 3 two hypergraph state based MBQC models,

namely GGM state model and Union Jack state model. Although their resource

states are constructed in different ways, they share two features: (i) they both

use CCZ gates as the unique building blocks: qubits in both states are entangled

purely by CCZ gates; (ii) both models can achieve universal computations by only

single-qubit Pauli measurements. Therefore, one of the obvious questions to ask

is: Is it possible to choose a gate P other than the CCZ gate, and use P as the

unique building blocks to construct a resource state for MBQC where universal

computations can be achieved by performing only Pauli measurements? The answer

turns out to be "Yes". Our discussions in this chapter will justify this answer and

will also serve as motivations for our construction in chapter 5.

In sections 4.1 and 4.2, we apply Graphical Fourier theory introduced in 2.6 and

transform the Union Jack state to an equivalent state composed purely by trinary π
4

phase gadgets. This equivalence serves both as an inspiration that we can use trinary
π
4 phase gadgets to construct a new universal resource state and as a bridge between

the two families of MBQC models: hypergraph state MBQC and phase gadget MBQC.

59

4. From Hypergraph to Phase Gadget MBQC

4.1 Sign-related decomposition

If we view a qubit as a vertex and a CCZ gate as a triangle, then we can imagine

that a Union Jack state is composed by many triangles. For convenience, we do not

consider the existence of a border in the Union Jack state. Then, it is clear that

there are two types of vertices: we say that a vertex shared by four triangles is of

type I and colour it in red, and a vertex shared by eight triangles is of type II and

colour it in blue, as illustrated in figure 4.1. We now apply the Graphical Fourier

→ →

Figure 4.1: Viewing the Union Jack state as being composed by triangles, where type I
vertices are coloured in red and type II vertices are coloured in blue. Type I vertices are
vertices that are shared by four triangles and type II vertices are the ones shared by eight
triangles.

theorem to decompose each CCZ gate in the Union Jack state. One important idea

to decompose CCZ gates in Union Jack state is that the Fourier decomposition of

a CCZ gate is not unique. Since a CCZ gate is self-adjoint, the outcome of taking

the conjugate of it is still a CCZ gate, which means we can flip all the phases in

its Fourier decomposition and still retain the same matrix. Expressing this idea in

60

4. From Hypergraph to Phase Gadget MBQC

ZH-calculus, the following equations (NFT3) and (FT4) hold true.

= −π
4

−π
4

π
4

−π
4

π
4

π
4

−π
4

= π
4

π
4

−π
4

π
4

−π
4

−π
4

π
4

(FT4)

= π
4

π
4

−π
4

π
4

−π
4

−π
4

π
4

(NFT3)

We say that two triangles are adjacent if they share two vertices. Next, we use

(+) and (−) to mark each triangle in Union Jack state such that any two adjacent

triangles are marked with different signs, illustrated as follows:

(+)
(-)

(+)
(-)

(+)
(-)

(+)
(-)

(+)
(-)

(+)
(-)

(-)
(+)

(-)
(+)

(-)
(+)

(-)
(+)

(-)
(+)

(-)
(+)

(-)
(+)

(-)
(+)

(+)
(-)

(+)
(-)

(+)
(-)

(+)
(-)

It is easy to check that this can be done. In addition, it is not hard to check

the following facts:

Fact 4.1.1. Type I vertices are shared by exactly 2 triangles marked with (+) and 2

triangles marked with (−).

Fact 4.1.2. Type II vertices are shared by exactly 4 triangles marked with (+) and

4 triangles marked with (−).

Fact 4.1.3. For any two different vertices that are shared by two triangles, they are

shared exactly by a triangle marked with (+) and another marked with (−).

61

4. From Hypergraph to Phase Gadget MBQC

Fact 4.1.4. For any two different vertices that belong to the same triangle, they are

shared exactly by two triangles.

We define a sign-related decomposition: if a triangle is marked with (+), then we

use (FT3) to decompose the corresponding CCZ gate; if a triangle is marked with

(−), then we use (NFT3) to decompose the corresponding CCZ gate.

Recall that vertices and qubits are treated as the same, and triangles and CCZ

gates are also treated as the same in our discussion in this section.

For a CCZ gate or triangle on vertices v1, v2, and v3, if we apply (FT3) to

decompose it, then after decomposition we will have a phase of −π4 on vertex v1, a

phase of −π4 on vertex v2, a phase of −π4 on vertex v3, a π
4 binary phase gadget on

vertices v1 and v2, a π
4 binary phase gadget on vertices v1 and v3, a π

4 binary phase

gadget on vertices v2 and v3, a −π4 trinary phase gadget on vertices v1, v2, and v3:

v1 v2

v3

v1 v2

v3

(+) (FT3)=
−π

4

−π
4

−π
4

v1 v2

v3

π
4

π
4

π
4

−π
4

For a CCZ gate or triangle on vertices v1, v2, and v3, if we apply (NFT3) to

decompose it, then after decomposition we will have a phase of π
4 on vertex v1, a

phase of π
4 on vertex v2, a phase of π

4 on vertex v3, a −π4 binary phase gadget on

vertices v1 and v2, a −π4 binary phase gadget on vertices v1 and v3, a −π4 binary phase

gadget on vertices v2 and v3, a π
4 trinary phase gadget on vertices v1, v2, and v3:

v1 v2

v3

v1 v2

v3

(−) (NFT3)=
π
4

π
4

π
4

v1 v2

v3

−π
4 −π

4

−π
4

π
4

62

4. From Hypergraph to Phase Gadget MBQC

4.2 Equivalence to phase gadget states

Now, we apply the sign-related decomposition to each triangle or CCZ gate in the

Union Jack state. By above facts 4.1.1 and 4.1.2, after sign-related decompositions,

on each type I vertex we will have two phases of −π4 and two phases of π
4 , and on

each type II vertex we will have four phases of −π4 and four phases of π
4 . Therefore,

after sign-related decompositions, the phase on each vertex is zero, since opposite

phases cancel out with each other by spider fusion (f).

By the fact 4.1.3, we see that for any two different vertices v1 and v2 that are

shared by two triangles, after decomposition, there will be exactly a binary phase

gadget P 2
−π
4

and another binary phase gadget P 2
π
4
on v1 and v2. These two opposite

binary phase gadgets will cancel out with each other by the phase gadget fusion rule

(PG1). Then, by fact 4.1.4, all binary phase gadgets are cancelled out.

Therefore, only trinary phase gadgets are left in the result of sign-related

decompositions. The resulting state after performing the above sign-related Fourier

decompositions is shown in figure 4.2. This resulting state is a phase gadget state.

Although it seems that two kinds of phase gadgets are contained in this phase gadget

state, we can transform this state to an equivalent state constructed by only π
4

phase gadgets. Next, we will show how to do that.

The following equation (NTP) holds true.

3π
4

−π
4

π

π

π

= (NTP)

This is because we have:

−π
4

=

−π
4

2π 2π

2π

(π),(c),(f)=

−π
4

π π

π

π

(PG1)=
π π

π

3π
4

63

4. From Hypergraph to Phase Gadget MBQC

−π
4

+π
4

−π
4 +π

4 +π
4

−π
4

−π
4

+π
4

−π
4

+π
4 −π

4 −π
4

+π
4

−π
4 +π

4

−π
4

+π
4

−π
4 +π

4 +π
4

−π
4

+π
4 −π

4

−π
4 −π

4

+π
4

+π
4

+π
4 +π

4

−π
4

−π
4

−π
4 −π

4

+π
4

+π
4

+π
4

...

......

...

Figure 4.2: Resulting state after applying sign-related Fourier decomposition to each
CCZ gate in the Union Jack state

We apply the equation (NTP) to each −π
4 phase gadget in the state in figure

4.2, and we have:

−π
4

+π
4

−π
4 +π

4 +π
4

−π
4

−π
4

+π
4

−π
4

+π
4 −π

4 −π
4

+π
4

−π
4 +π

4

+π
4

...

...

4π 4π

4π 4π

2π 3π
4

+π
4

3π
4 +π

4

4π

4π

+π
4

3π
4

2π

3π
4

4π 4π

2π +π
4

3π
4

+π
4

3π
4

4π

3π
4

+π
4

2π

3π
4 +π

4

+π
4

...

(NTP),(f)=

...

...

...... ...

64

4. From Hypergraph to Phase Gadget MBQC

3π
4

π
4

3π
4

π
4

π
4

3π
4

3π
4

π
4

3π
4

π
4

3π
4

3π
4

π
4

3π
4

π
4

π
4

...... ...

...

......=

here we get a state composed by 3π
4 and π

4 trinary phase gadgets. Recall that a
3π
4 phase gadget can be composed by three π

4 phase gadgets using rule of (PG1).

So, the state in figure 4.2 is equivalent to a phase gadget state composed purely by
π
4 phase gadgets. Therefore, the Union Jack state is equivalent to a phase gadget

state which is composed purely by trinary π
4 phase gadgets.

Discussions This equivalence indicates a link between the two families of MBQC

models, namely hypergraph state MBQC and phase gadget MBQC. The Union Jack

state based MBQC model is universal, and the Union Jack state is originally con-

structed by CCZ gates. Amazingly, by applying sign-related Fourier decompositions

to decompose each CCZ gate in the Union Jack state, we get an equivalent phase

gadget state composed by 3-ary π
4 phase gadgets. Since the Union Jack state can

be used as a resource state to achieve universal computations, using this equivalent

phase gadget state as a resource state can also achieve universal computations, which

indicates that π
4 trinary phase gadgets are promising building blocks for a universal

MBQC resource state. Following this idea, in chapter 5, we will use 3-ary π
4 phase

gadgets as basic elements to build a new universal MBQC model.

65

5
A New MBQC Model

In this chapter, we present a new MBQC model that achieves universal computations

with a deterministic protocol using only Pauli X and Z measurements, and we use

ZH-calculus to prove correctness of our model. Motivated by the idea discussed

in chapter 4, we use trinary π
4 phase gadgets to construct the resource state. In

section 5.1, we introduce new notations that help us better present the new resource

state. In section 5.2, we present our construction of the new resource state. In

section 5.3, we define important measurement patterns on fragments of our resource

state. In section 5.4, we use ZH-calculus to justify all the measurement patterns

defined in section 5.3. For conciseness of proofs, we assume in sections 5.3 and

5.4 that there are no incoming Pauli Z and X errors on input wires of fragments.

But we take these incoming errors into account in the following sections to fully

justify that our MBQC model can correct measurement errors. In section 5.5, we

discuss how we adapt our measurement patterns so as to correct measurement errors.

In section 5.6, we put everything together and show that we can deterministically

achieve universal computations with our MBQC model.

66

5. A New MBQC Model

5.1 Notations

For simplicity, we use the following green dashed rounded rectangle to represent

a trinary π
4 phase gadget:

:=

π
4

When we fuse two π
4 trinary phase gadgets together by (PG1), we get a π

2 trinary

gadget, which we use the following double green dashed rounded rectangle to denote:

:=

π
2

Orange, red, and grey boxes To avoid drawing a lot of green dashed lines,

we define the notations of orange boxes, red boxes and grey boxes in figure 5.1,

figure 5.2, and figure 5.3 respectively.

1 2 3

x1 x2 x3

y1 y2 y3

z1 z2 z3

1 2 3 :=

Figure 5.1: The orange box notation. The notation on the left-hand side defines a
twelve-qubit system with six π

2 trinary phase gadgets, and one π
4 trinary phase gadgets

shown on hte right-hand side. 9 qubits and phase gadgets are encapsulated or hidden in
the box.

Remark 5.1.1. When we introduce notations, we usually number all qubits using

characters, which serves as making the relative positions of qubits clearer. Numberings

have no syntactic meaning.

67

5. A New MBQC Model

1 2 3

x1 x2 x3

y1 y2 y3

z1 z2 z3

1 2 3 :=

Figure 5.2: The red box notation. The notation on the left-hand side defines a twelve-qubit
system with seven π

2 trinary phase gadgets. 9 qubits and phase gadgets are encapsulated or
hidden in the box. The only difference between this notation and the orange box notation
in figure 5.1 is that here in the red box notation, the trinary phase gadget on the bottom
is a π

2 phase gadget rather than a π
4 phase gadget.

1

x

y

1 :=

Figure 5.3: The grey box notation. The notation on the left-hand side defines a three-qubit
system with one π

2 trinary phase gadget. 2 qubits and the phase gadget are encapsulated
or hidden in the box.

Remark 5.1.2. In the orange box, red box, and grey box notation, there is a small

box attached to the larger box. The reason why we create this small box in these

notations will become clear in section 5.3. The position of the small box has no

syntactic meaning as illustrated in figure 5.4. That is, we can attach the small box

to the left, to the right, to the bottom, or on the top, of the larger box.

1 2 3
=

1 2 3

= 1 2 3 =

1 2 3

= ...

Figure 5.4: In the orange, the red, and the grey box notation, the position where the
little box is attached to the larger one has no syntactic meaning.

68

5. A New MBQC Model

Remark 5.1.3. Two different box (orange, red, or grey) would never share any

hidden qubits, even if they overlap each other. In other words, if a qubit is hidden

by a box notation, then it is hidden by this box only. For example, the following

diagram defines a 14-qubit system:

1 2 3

There are three visible qubits 1, 2, and 3, nine qubits hidden by the orange box, and

two qubits hidden by the grey box.

Filled orange boxes and ropes Now we are ready to define a filled orange box

notation and a rope notation, which will be used to present our new resource state.

The filled orange box notation is defined in figure 5.5. This filled orange box system

is composed by one orange box defined in figure 5.1, one red box defined in figure 5.2,

and three grey boxes defined in figure 5.3. The rope notation is defined in figure 5.6.

1 2 3 := 1 2 3

Figure 5.5: The filled orange box notation. This notation defines a 27-qubit system with
17 phase gadgets. Note that as mentioned in remark 5.1.3, no hidden qubits are shared by
different boxes.

y

x1 x2 x3

:=1 2 1 2

Figure 5.6: The rope notation. This notation defines a six-qubit system with five phase
gadgets.

69

5. A New MBQC Model

Remark 5.1.4. There are also hidden qubits in the rope notation. Similar to the

case of orange/red/grey box notations, qubits hidden by a rope notation are "private"

to this rope, and will never be shared with other ropes or orange/red/grey boxes.

Remark 5.1.5. Whether we draw our notations horizontally or vertically has no

syntactic meaning. For example, we have:

=

5.2 The new resource state

The resource state is presented in figure 5.7. In our resource state, the boxes are

filled orange systems defined in figure 5.5. We can think of these boxes as bricks.

We connect these bricks with rope systems defined in figure 5.6. It is clear that

our state has a vertical layered structure. In each layer, bricks are parallel to each

other. Between two adjacent layers, there is always an offset of one qubit in the

arrangement of bricks. The reason why we arrange boxes and ropes in the way

shown in figure 5.7 is to allow gates implemented by measurement patterns on these

boxes and ropes to compose together in any manner.

5.3 Measurement patterns

In this section, we define measurement patterns on the box and rope systems

introduced in section 5.1. Since a system can have multiple measurement patterns,

to differentiate them, we write different symbols in the little box of the box notations

or in the centre of the rope notation to represent different measurement patterns.

Notations for measurement patterns introduced in section 2.9.3 is used in this section.

Let us recall a point that is introduced in section 2.9.3. When we define a

measurement pattern on a fragment of a resource state, we set inputs and outputs.

In a measurement pattern, if a qubit is set as an input or an output, then this

70

5. A New MBQC Model

...
... ...

...

...

......

Figure 5.7: The resource state. This resource state is composed purely by π
4 phase

gadgets. The filled orange box and rope notations defined in section 5.1 are used.

qubit will not be measured. There is an input wire for each input qubit and an

output wire for each output qubit. These input and output wires are free or dangling

edges, but we often omit them in diagrams.

Measurement patterns on the orange and red box system First, we define

several measurement patterns on the orange box and the red box system. In figure

5.8, we set qubits 1, 2, and 3 as both inputs and outputs and define a T1 measurement

pattern on the orange box system. This measurement pattern implements a T gate

71

5. A New MBQC Model

on qubit 1. Symmetrically, in figures A.2 and A.3, we define a T2 measurement

X Z Z

Z Z Z

X Z Z

1 2 3

1 2 3 :=T1

Figure 5.8: A measurement pattern on the orange box notation. This measurement
pattern implements a T gate on qubit 1. Qubits 1, 2, and 3 are both inputs and outputs.

pattern and a T3 measurement pattern on the orange box system.

In figure 5.9, we set qubits 1, 2, and 3 as both inputs and outputs and define

a S∗ measurement pattern on the orange box system. This measurement pattern

implements S gates on qubits 1, 2, and 3. Similarly, we define in figure A.4 a S∗

Z Z Z

Z Z Z

Z Z Z

1 2 3

1 2 3 :=S∗

Figure 5.9: A measurement pattern on the orange box notation. This measurement
pattern implements S gates on qubits 1, 2, and 3. Qubits 1, 2, and 3 are both inputs and
outputs.

measurement pattern on the red box system.

In figure 5.10, we set qubits 1, 2, and 3 as both inputs and outputs and define

a P1,2 measurement pattern on the orange box system. This measurement pattern

implements a binary π
4 phase gadget on qubits 1 and 2. Symmetrically, we define

in figures A.5 and A.6 a P1,3 measurement pattern and a P2,3 measurement pattern

on the orange box system. Similarly, we define in figures A.7, A.8, and A.9 a

72

5. A New MBQC Model

X X Z

Z Z Z

X X Z

1 2 3

1 2 3 :=P1,2

Figure 5.10: A measurement pattern on the orange box notation. This measurement
pattern implements a binary π

4 phase gadget on qubits 1 and 2. Qubits 1, 2, and 3 are
both inputs and outputs.

P1,2 measurement pattern, a P1,3 measurement pattern, and a P2,3 measurement

pattern on the red box system.

In figure 5.11, we set qubits 1, 2, and 3 as both inputs and outputs and define

a P∗ measurement pattern on the orange box system. This measurement pattern

implements a trinary π
4 phase gadget on qubits 1, 2, and 3. Similarly, we define in

X X X

Z Z Z

X X X

1 2 3

1 2 3 :=P∗

Figure 5.11: A measurement pattern on the orange box notation. This measurement
pattern implements a trinary π

4 phase gadget on qubits 1, 2, and 3. Qubits 1, 2, and 3 are
both inputs and outputs.

figure A.10 a P∗ measurement pattern on the red box system.

Measurement patterns on the grey box system Next, we define two measure-

ment patterns on the grey box system. In figure 5.12, we set qubit 1 as both the input

and the output and define a S measurement pattern on the grey box system. This

measurement pattern implements a S gate on qubit 1. In figure 5.13, we set qubit 1

73

5. A New MBQC Model

Z

Z

1

1 :=S

Figure 5.12: A measurement pattern on the grey box notation. This measurement
pattern implements a S gate on qubit 1. Qubit 1 is both the input and the output.

as both the input and the output and define an I measurement pattern on the grey

box system. This measurement pattern implements an identity gate on qubit 1.

X

X

1

1 :=I

Figure 5.13: A measurement pattern on the grey box notation. This measurement
pattern implements an identity operation on qubit 1. Qubit 1 is both the input and the
output.

Measurement patterns on the rope system Next, we define two measurement

patterns on the rope system. In figure 5.14, we set qubit 1 as the input and qubit

2 as the output and define an I measurement pattern on the rope system. This

measurement pattern implements an identity wire between qubits 1 and 2. In

X

Z Z Z

:=1 2 1 2===

Figure 5.14: A measurement pattern on the rope notation. This measurement pattern
implements an identity wire between qubits 1 and 2. Qubit 1 is the input and qubit 2 is
the output.

74

5. A New MBQC Model

figure 5.15, we set qubit 1 as the input and qubit 2 as the output and define a H

measurement pattern on the rope system. This measurement pattern implements

a CZ wire between qubits 1 and 2.

Z

X Z X

:=1 2 1 2= // =

Figure 5.15: A measurement pattern on the rope notation. This measurement pattern
implements a CZ wire between qubits 1 and 2. Qubit 1 is the input and qubit 2 is the
output.

Measurement patterns on the filled orange box system Next, we define

measurement patterns on the filled orange box system. In figure 5.16, we set qubits

1, 2, and 3 as both inputs and outputs, and define a T1 measurement pattern on the

filled orange box system. This measurement pattern implements a T gate on qubit 1.

1 2 3

:= 1 2 3
T1

S∗
T

I I

I

Figure 5.16: A measurement pattern on the filled orange box notation. This measurement
pattern implements a T gate on qubit 1. Qubits 1, 2, and 3 are both inputs and outputs.

Remark 5.3.1. One important reason why we compose orange, red, and grey

boxes together to make the filled orange box system is to form a scheme to correct

measurement errors. This T1 measurement pattern in figure 5.16 does additional

work to correct errors, while the other T1 measurement pattern defined in figure 5.8

does not. Similar arguments apply to other measurement patterns defined on the

filled orange box system.

75

5. A New MBQC Model

Symmetrically, we define in figures A.11 and A.12 a T2 measurement pattern

and a a T3 measurement pattern on the filled orange box system.

In figure 5.17, we set qubits 1, 2, and 3 as both inputs and outputs, and define

a S∗ measurement pattern on the filled orange box system. This measurement

pattern implements S gates on qubits 1, 2, and 3. For convenience, next we define a

1 2 3

:= 1 2 3
S∗

S∗
S S S

S S

S

Figure 5.17: A measurement pattern on the filled orange box notation. This measurement
pattern implements S gates on qubits 1, 2, and 3. Qubits 1, 2, and 3 are both inputs and
outputs.

generalized form for measurement patterns like S∗. In figure 5.18, we set qubits 1, 2,

and 3 as both inputs and outputs, and define a series of measurement patterns on

the filled orange box system. One special case of the measurement patterns defined

1 2 3

:= 1 2 3
S∗

S∗A1 A2 A3

A1 A2

A3

Figure 5.18: A measurement pattern defined on the filled orange box system. For
i ∈ {1, 2, 3}, Ai ∈ {S, I}. For i ∈ {1, 2, 3}, this measurement pattern implements a S gate
on qubit i if Ai = S; otherwise it implements an identity gate on qubit i. Qubits 1, 2, and
3 are both inputs and outputs.

in figure 5.18 is an I measurement pattern shown in figure 5.19. This I measurement

pattern implements identity gates on qubits 1, 2, and 3.

In figure 5.20, we set qubits 1, 2, and 3 as both inputs and outputs, and define a

P
(1,2)
π
4

measurement pattern on the filled orange box system. Note that this P (1,2)
π
4

measurement pattern is performed in two steps, where the measurements in the

second step depend on the measurement outcomes of the first step. In the first

step, we perform on the orange box the P1,2 measurement pattern defined in figure

76

5. A New MBQC Model

1 2 3

:= 1 2 3
S∗

S∗
I I I

I I

I

Figure 5.19: A measurement pattern on the filled orange box notation. This measurement
pattern implements identity gates on qubits 1, 2, and 3. Qubits 1, 2, and 3 are both inputs
and outputs.

5.10. The values of Φ1,2 and Θ are then determined by whether a phase gadget

error is produced in this measurement. If a phase gadget error is produced, then

Φ1,2 = P1,2 and Θ = I; otherwise, Φ1,2 = S∗ and Θ = S. In the second step,

we perform measurement patterns defined on the red box and grey box system.

This measurement pattern implements a binary π
4 phase gadget on qubits 1 and 2.

Symmetrically, we define in figures A.13 and A.14 a P (1,3)
π
4

measurement pattern and

1 2 3

:= 1 2 3P1,2

Φ1,2
Pπ

4

Θ Θ

I

Figure 5.20: A measurement pattern on the filled orange box system. First, we perform
on the orange box P1,2 measurement pattern. If a phase gadget error is produced then
Φ1,2 = P1,2 and Θ = I; otherwise Φ1,2 = S∗ and Θ = S. Then we perform all the rest of
measurements defined in this figure. This measurement pattern implements a binary π

4
phase gadget on qubits 1 and 2. Qubits 1, 2, and 3 are both inputs and outputs.

a P (2,3)
π
4

measurement pattern on the filled orange box system.

In figure 5.21, we set qubits 1, 2, and 3 as both inputs and outputs, and define a

Pπ
4
measurement pattern on the filled orange box system. This measurement pattern

is also performed in two steps, where the values of Φ∗ and Θ are determined by

whether a phase gadget error is produced in the first step. This measurement pattern

implements a trinary π
4 phase gadget on qubits 1, 2, and 3.

Similarly, in figure 5.22, we set qubits 1, 2, and 3 as both inputs and outputs, and

define a Pπ
2
measurement pattern on the filled orange box system. This measurement

pattern implements a trinary π
2 phase gadget on qubits 1, 2, and 3.

77

5. A New MBQC Model

1 2 3

:= 1 2 3
P∗

Φ∗
Pπ

4

Θ Θ

Θ

Figure 5.21: A measurement pattern on the filled orange box system. First, we perform
on the orange box P∗ measurement pattern defined in figure 5.11. If a phase gadget error
is produced, then Φ∗ = P∗ and Θ = I; otherwise Φ∗ = S∗ and Θ = S. Then we perform all
the rest of measurements defined in this figure. This measurement pattern implements
a trinary π

4 phase gadget on qubits 1, 2, and 3. Qubits 1, 2, and 3 are both inputs and
outputs.

1 2 3

:= 1 2 3
S∗

P∗
Pπ

2

S S

S

Figure 5.22: A measurement pattern on the filled orange box notation. This measurement
pattern implements a trinary π

2 phase gadget on qubits 1, 2, and 3. Qubits 1, 2, and 3 are
both inputs and outputs.

In figure A.17, we set qubits 1, 2, and 3 as both inputs and outputs, and define a

P
(1,2)
π
2

measurement pattern on the filled orange box system. Symmetrically, we define

in figures A.15 and A.16 a P (1,3)
π
2

measurement pattern and a P (2,3)
π
2

measurement

pattern on the filled orange box system.

To provide more flexibility, we also allow measurement patterns like those defined

in figures A.18, A.19, A.20, A.21. It should also be clear how to define measurement

patterns that are symmetric to those in figures A.18, A.19, A.20, A.21.

5.4 Proofs for measurement patterns

In this section, we prove that the measurement patterns defined in section 5.3

implement their corresponding target gates or operations.

Proofs for measurement patterns on orange, red, and grey boxes The

following lemma 5.4.1 justifies measurement patterns implementing T gates on

78

5. A New MBQC Model

the orange box system.

Lemma 5.4.1. The following three statements hold true:

• The measurement pattern defined in figure 5.8 implements a T gate on qubit

1, up to Pauli Z errors and S errors.

• The measurement pattern defined in figure A.2 implements a T gate on qubit

2, up to Pauli Z errors and S errors.

• The measurement pattern defined in figure A.3 implements a T gate on qubit

3, up to Pauli Z errors and S errors.

Proof. We only need to prove the first part of the lemma, since the three parts are

symmetric. We first use rules of measurement patterns introduced in section 2.9.3 to

translate the measurement pattern into a ZH-diagram as follows:

X Z Z

Z Z Z

X Z Z

1 2 3

x1 x2 x3

y1 y2 y3

z1 z2 z3

→
a1π

c1π

b1π

π
2

π
2

a2π

b2π

c2π

π
2

π
2

a3π

b3π

c3π

π
2

π
2

π
4

Then, apply rules of ZH-calculus and we have:

x1 x2 x3

y1 y2 y3

z1 z2 z3

a1π

c1π

b1π

π
2

π
2

a2π

b2π

c2π

π
2

π
2

a3π

b3π

c3π

π
2

π
2

π
4

(π),(c),(f)=
a1π

c1π

b1π
π
2

b1π
π
2

(b2 + c2)π π
2

(a2 + b2)π π
2

(c2 + c3π)

π
4

(b3 + c3)π π
2

(a3 + b3)π π
2

79

5. A New MBQC Model

(π2),(f),(π)=

a1π

c1π

(b1 − 1
2)π

(b1 − 1
2)π (1

2 + a2 + b2)π

(c2 + c3)π

π
4

(1
2 + a3 + b3)π

(π)=

a1π

c1π

(b1 − 1
2)π

(a1 + b1 − 1
2)π

(1
2 + a2 + b2)π

(c2 + c3)π π
4

(1
2 + a3 + b3)π

(f)=

(1
2 + a2 + b2)π

(1
2 + a3 + b3)π

a1π

(c1 + π
4)π(a1 + 2b1 + c2 + c3 − 1)π

(π),(c)=

(1
2 + a2 + b2)π (1

2 + a3 + b3)π

a1π

(−1)a1+2b1+c2+c3−1(c1 + 1
4)π

(f)=
−π

2 (a1 + 2b1 + 2c1 + c2 + c3 − 1)

(a2 + b2)π

(a3 + b3)π

π
4

π
2

π
2

�

The following lemma 5.4.2 justifies measurement patterns implementing S gates

on the orange box system.

Lemma 5.4.2. The measurement pattern defined in figure 5.9 implements S gates

on qubits 1, 2 and 3, up to Pauli Z errors.

Proof. Translate the measurement pattern into a ZH-diagram as follows:

Z Z Z

Z Z Z

Z Z Z

1 2 3

x1 x2 x3

y1 y2 y3

z1 z2 z3

→

a1π

c1π

b1π

π
2

π
2

a2π

b2π

c2π

π
2

π
2

a3π

b3π

c3π

π
2

π
2

π
4

80

5. A New MBQC Model

Then, apply rules of ZH-calculus and we have:

a1π

c1π

b1π

π
2

π
2

a2π

b2π

c2π

π
2

π
2

a3π

b3π

c3π

π
2

π
2

π
4

(π),(c),(f)= (b2 + c2)π π
2

(a2 + b2)π π
2

(c1 + c2 + c3π) π
4

(b3 + c3)π

π
2

(a3 + b3)π

π
2

(b1 + c1)π π
2

(a1 + b1)π π
2

(1
2 + a2 + b2)π (1

2 + a3 + b3)π(1
2 + a1 + b1)π

(π),(c)= (f)=
π
2

(a1 + b1)π

π
2

(a3 + b3)π

π
2

(a2 + b2)π

�

Remark 5.4.3. In this case, the S gate is the computation we intend to implement

or our target gate, so we do not treat it as an error.

The following lemma 5.4.4 is similarly to lemma 5.4.2, and so is its proof. It

justifies measurement patterns implementing S gates on the red box system.

Lemma 5.4.4. The measurement pattern defined in figure A.4 implements S gates

on qubits 1, 2 and 3, up to Pauli errors.

Proof. Similar to the proof for lemma 5.4.2. �

The following lemma 5.4.5 justifies measurement patterns implementing binary
π
4 phase gadgets on the orange box system.

Lemma 5.4.5. The following three statements hold true:

• The measurement pattern defined in figure 5.10 implements a binary π
4 phase

gadget on qubits 1 and 2, up to Pauli Z errors, binary π
2 phase gadget errors,

and S errors.

• The measurement pattern defined in figure A.5 implements a binary π
4 phase

gadget on qubits 1 and 3, up to Pauli Z errors, binary π
2 phase gadget errors,

and S errors.

81

5. A New MBQC Model

• The measurement pattern defined in figure A.6 implements a binary π
4 phase

gadget on qubits 2 and 3, up to Pauli Z errors, binary π
2 phase gadget errors,

and S errors.

Proof. We only need to prove the first part of the lemma, since the three parts are

symmetric. Translate the measurement pattern into a ZH-diagram as follows:

X X Z

Z Z Z

X X Z

1 2 3

x1 x2 x3

y1 y2 y3

z1 z2 z3

→

a1π

c1π

b1π

π
2

π
2

a2π

b2π

c2π

π
2

π
2

a3π

b3π

c3π

π
2

π
2

π
4

Then, apply rules of ZH-calculus and we have:

(π),(c),(f)=
a1π

c1π

b1π
π
2

b1π
π
2

c3π
π
4

(b3 + c3)π

π
2

(a3 + b3)π

π
2

a2π

c2π

b2π
π
2

b2π
π
2

a1π

c1π

b1π

π
2

π
2

a2π

b2π

c2π

π
2

π
2

a3π

b3π

c3π

π
2

π
2

π
4

(π2),(f),(π)=
a1π

c1π

(b1 − 1
2)π

(b1 − 1
2)π

c3π
π
4

(a3 + b3 + 1
2)π

a2π

c2π

(b2 − 1
2)π

(b2 − 1
2)π

(f),(π)=
a1π

c1π(b1 − 1
2)π

(a1 + b1 − 1
2)π c3π

π
4

(a3 + b3 + 1
2)π

a2π

c2π(b2 − 1
2)π

(a2 + b2 − 1
2)π

(f),(π)=

(a1 + c1)π

(a1 + 2b1 − 1)π

π
4

(a3 + b3 + 1
2)π

(a2 + c2)π

(a2 + 2b2 − 1)π

c3π
(f),(π)=

π
4

(a3 + b3 + 1
2)π

(a1 + 2b1 + c3 − 1)π

(a1 + c1)π

(a1 + 2b1 + c3 − 1)π

(a2 + 2b2 − 1)π

(a2 + c2)π

(a2 + 2b2 − 1)π

82

5. A New MBQC Model

(PG2),(f)=

π
4 (−1)a1+2b1+c3−1+a2+2b2−1

(a3 + b3 + 1
2)π

(a1 + c1)π (a2 + c2)π
(PG1)=

π
4

(a3 + b3 + 1
2)π

(a1 + c1)π (a2 + c2)π

−π
2 (a1 + 2b1 + c3 + a2 + 2b2)

According to the above derivations, we can see that a π
2 phase gadget error will appear

if a1+2b1+c3+a2+2b2 = (2k+1), and it will not appear if a1+2b1+c3+a2+2b2 = 2k,

where k ∈ Z. �

The following lemma 5.4.6 is similar to the above lemma 5.4.5. It justifies

measurement patterns implementing binary π
2 phase gadgets on the red box system.

Lemma 5.4.6. The following three statements hold true:

• The measurement pattern defined in figure A.7 implements a binary π
2 phase

gadget on qubits 1 and 2, up to Pauli Z errors and S errors.

• The measurement pattern defined in figure A.8 implements a binary π
2 phase

gadget on qubits 1 and 3, up to Pauli Z errors and S errors.

• The measurement pattern defined in figure A.9 implements a binary π
2 phase

gadget on qubits 2 and 3, up to Pauli Z errors and S errors.

Proof. The proof is similar to the proof for lemma 5.4.5. There is only one thing to

note: this measurement pattern in figure A.10 will not produce any phase gadget

errors. This is because a π phase gadget error will "break down" into Pauli Z errors

by equation (PGπ). �

The following lemma 5.4.7 justifies the measurement pattern implementing trinary
π
4 phase gadgets on the orange box system.

83

5. A New MBQC Model

Lemma 5.4.7. The measurement pattern defined in figure 5.11 implements a trinary
π
4 phase gadget on qubits 1, 2, and 3, up to Pauli Z and trinary π

2 phase gadget

errors.

Proof. Translate the measurement pattern into a ZH-diagram as follows:

X X X

Z Z Z

X X X

1 2 3

x1 x2 x3

y1 y2 y3

z1 z2 z3

→

a1π

c1π

b1π

π
2

π
2

a2π

b2π

c2π

π
2

π
2

a3π

b3π

c3π

π
2

π
2

π
4

Then, we apply rules of ZH-calculus and we have:

(π),(c),(f)=
a1π

c1π

b1π
π
2

b1π
π
2

π
4

a2π

c2π

b2π
π
2

b2π
π
2

a3π

c3π

b3π
π
2

b3π
π
2

a1π

c1π

b1π

π
2

π
2

a2π

b2π

c2π

π
2

π
2

a3π

b3π

c3π

π
2

π
2

π
4

(π2),(f),(π)=
a1π

c1π

(b1 − 1
2)π

(b1 − 1
2)π

π
4

a2π

c2π

(b2 − 1
2)π

(b2 − 1
2)π

(f),(π)=

a1π

c1π

(b1 − 1
2)π

(a1 + b1 − 1
2)π

π
4

a2π

c2π

(b2 − 1
2)π

(a2 + b2 − 1
2)πa3π

c3π

(b3 − 1
2)π

(b3 − 1
2)π a3π

(b3 − 1
2)π

(a3 + b3 − 1
2)π

c3π

(f),(π)=
(a1 + c1)π

(a1 + 2b1 − 1)π

π
4

(a2 + c2)π

(a2 + 2b2 − 1)π

(a3 + c3)π

(a3 + 2b3 − 1)π

(f)=

(a3 + c3)π(a2 + c2)π(a1 + c1)π

(a1 + 2b1 − 1)π

π
4

(a2 + 2b2 − 1)π (a3 + 2b3 − 1)π

84

5. A New MBQC Model

(π)=

3

π
4

(a3 + 2b3 − 1)π

(a3 + 2b3 − 1)π

(a3 + c3)π2
(a2 + 2b2 − 1)π

(a2 + 2b2 − 1)π

(a2 + c2)π
1

(a1 + 2b1 − 1)π

(a1 + 2b1 − 1)π

(a1 + c1)π

(PG3),(f)= 3

π
4 (−1)a3+2b3−1+a2+2b2−1+a1+2b1−1

(a3 + c3)π

2
(a2 + c2)π

1
(a1 + c1)π

(PG1),(f)=

π
4

(a3 + c3)π

(a2 + c2)π

(a1 + c1)π

−π
2 (a1 + a2 + a3 + 2(b1 + b2 + b3))

�

The following lemma is similar to lemma 5.4.7 and its proof is also similar.

It justifies the measurement pattern implementing trinary π
2 phase gadgets on

the red box system.

Lemma 5.4.8. The measurement pattern defined in figure A.10 implements a trinary
π
2 phase gadget on qubits 1, 2, and 3, up to Pauli errors.

Proof. The proof is very similar to the proof for lemma 5.4.7. Again note that this

measurement pattern in figure A.10 will not produce phase gadget errors. This is

because by rules of ZH-calculus, a π phase gadget error will "break down" into Pauli

Z errors as shown by equation (PGπ). �

The following lemma 5.4.9 justifies the measurement pattern implementing S

gates on the grey box system.

85

5. A New MBQC Model

Lemma 5.4.9. The measurement pattern defined in figure 5.12 implements a S gate

on qubit 1, up to Pauli Z errors.

Proof. Translate the measurement pattern into a ZH-diagram as follows:

Z

Z

1

x

y

→
aπ

bπ

π
2

Then, we apply rules of ZH-calculus and we have

aπ

bπ

π
2

(π),(c),(f)= (a+ b+ 1
2)π

(π),(c)=
(a+ b)π

π
2

(f)=
(a+ b)π

π
2

�

The following lemma 5.4.10 justifies the measurement pattern implementing

identity gates on the grey box system.

Lemma 5.4.10. The measurement pattern defined in figure 5.13 implements an

identity gate on qubit 1, up to Pauli Z errors.

Proof. Translate the measurement pattern into a ZH-diagram as follows:

X

X

1

x

y

→
aπ

bπ

π
2

Then, we apply rules of ZH-calculus and we have:

aπ

bπ

π
2

(f)= aπ

bπ

π
2 (π),(c),(f)=

aπ

�

86

5. A New MBQC Model

Remark 5.4.11. In the above derivations, we see that with some measurement

outcomes, the result of calculation is zero. Getting a zero means that the probability

of producing the corresponding measurement outcomes is zero, so we simply omit

such discussions in our proofs.

Proofs for measurement patterns on ropes The following lemma 5.4.12 justifies

the measurement pattern implementing identity gates on the rope structure.

Lemma 5.4.12. The measurement pattern defined in figure 5.14 implements an

identity wire between qubits 1 and 2, up to Pauli X and Z errors.

Proof. Translate the measurement pattern into a ZH-diagram as follows:

X

Z Z Z

y

x1 x2 x3

1 2

→

π
2

π
2

π
2

π
2

π
2

aπ
bπ cπ

dπ

Then, we apply rules of ZH-calculus and we have:

π
2

π
2

π
2

π
2

π
2

aπ
bπ cπ

dπ

(f),(π),(c)=

dπ

(a+ b)π

π
2

(b+ c)π

π
2

bπ

π
2

bπ

π
2

(a+ b+ c)π

π
2

87

5. A New MBQC Model

(f),(π2),(π),(c)=
dπ

(a+ b+ 1
2)π

(b− 1
2)π(b− 1

2)π

(b+ c+ 1
2)π

(f),(π)=
(a+ b+ 1

2)π dπ (b+ c+ 1
2)π(2b+ d− 1)π

(f)=
(a+ b+ 1

2)π (b+ c+ d+ 1
2)π(d− 1)π (π),(f)=

(a+ 2b+ c+ 2d)π

(d− 1)π
= (a+ c)π (d− 1)π

�

The following lemma 5.4.13 justifies the measurement pattern implementing

Hadamard gates on the rope structure.

Lemma 5.4.13. The measurement pattern defined in figure 5.15 implements a CZ

wire between qubits 1 and 2, up to Pauli X and Z errors.

Proof. Translate the measurement pattern into a ZH-diagram as follows:

Z

X Z X

y

x1 x2 x3

1 2

→

π
2

π
2

π
2

π
2

π
2

aπ
bπ cπ

dπ

Then, we apply rules of ZH-calculus and we have:

π
2

π
2

π
2

π
2

π
2

aπ
bπ cπ

dπ

(f),(π),(c)= aπ cπbπ

π
2

bπ

π
2

(b+ d)π

π
2

(b+ d)π

π
2

bπ

π
2

88

5. A New MBQC Model

(f),(π2),(π),(c)= aπ cπ(b− 1
2)π (b− 1

2)π

(b+ d+ 1
2)π(b+ d+ 1

2)π

(b− 1
2)π

(f),(π)=
(b+ d+ 1

2)π

cπ(a+ 2b− 1)π

(b− 1
2)π

(a+ b+ d+ 1
2)π

(f),(π)=

(b+ d+ c+ 1
2)π

(a− 1)π (b+ c− 1
2)π

(a+ b+ d+ 1
2)π

(f)=
(b+ d+ c+ 1

2)π

(a+ b+ c− 3
2)π

(a+ b+ d+ 1
2)π

(f)=
(b+ d+ c+ 1

2)π

(a+ b+ c− 3
2)π

(a+ b+ d)ππ
2

(π),(f)=
(b+ d+ c+ 1

2)π(c+ d)π

(a+ b+ d)π

π
2

π
2

(f)=
(b+ c+ d)π(c+ d)π

(a+ b+ d)π

π
2

π
2

π
2

(π)=
(a+ 2b+ c+ 2d)π(c+ d)π

π
2

π
2 (c+ d+ 1

2)π

(f)=
(a+ c)π(c+ d)π

π
2

π
2

(c+ d)π

π
2

(ED),(π),(f)= (a+ 2c+ d)π(c+ d)π

= (a+ d)π(c+ d)π

�

Proofs for measurement patterns on filled orange boxes The following

lemma 5.4.14 justifies measurement patterns implementing T gates on the filled

orange box system.

Lemma 5.4.14. The following three statements hold true:

• The measurement pattern defined in figure 5.16 implements a T gate on qubit

1, up to Pauli Z errors.

• The measurement pattern defined in figure A.11 implements a T gate on qubit

2, up to Pauli Z errors.

89

5. A New MBQC Model

• The measurement pattern defined in figure A.12 implements a T gate on qubit

3, up to Pauli Z errors.

Proof. We only need to prove the first part of the lemma, since the three parts are

symmetric. Note in this measurement pattern, we treat S gates as errors. By lemmas

5.4.1, 5.4.4, and 5.4.10, after performing measurements defined in figure 5.16, we will

have a T gate on qubit 1, two S errors on qubit 1, two S errors on qubit 2, two S

errors on qubit 3, and Pauli Z errors on qubits 1, 2, and 3. By the spider fusion rule

(f), two S errors fuse up to become a Pauli Z error. Therefore, this measurement

pattern implements a T gate on qubit 1 up to Pauli Z errors. �

The following lemma 5.4.15 justifies measurement patterns implementing S or

identity gates on the filled orange box system.

Lemma 5.4.15. For i ∈ {1, 2, 3}, the measurement pattern defined in figure 5.18

implements a S gate on qubit i if Ai = S; otherwise it implements an identity gate

on qubit i.

Proof. By lemmas 5.4.2, 5.4.4, 5.4.9, 5.4.10, after performing measurements defined

in figure 5.18, for i ∈ {1, 2, 3}, if Ai = S, then there will be three S gates on qubit

i; otherwise there will be two S gates on qubit i. By the spider fusion rule (f),

two S gates fuse up to become a Pauli Z error. Therefore, on qubit i ∈ {1, 2, 3},

this measurement implements a S gate up to Pauli Z errors if Ai = S; otherwise it

implements a identity gate up to Pauli Z errors. �

The following lemma 5.4.16 justifies measurement patterns implementing binary
π
4 phase gadgets on the filled orange box system.

Lemma 5.4.16. The following three statements hold true:

• The measurement pattern defined in figure 5.20 implements a binary π
4 phase

gadget on qubits 1 and 2, up to Pauli Z errors.

90

5. A New MBQC Model

• The measurement pattern defined in figure A.13 implements a binary π
4 phase

gadget on qubits 1 and 3, up to Pauli Z errors.

• The measurement pattern defined in figure A.14 implements a binary π
4 phase

gadget on qubits 2 and 3, up to Pauli Z errors.

Proof. We only need to prove the first part of the lemma, since the three parts are

symmetric.

This measurement pattern is performed in two steps, in the first step we perform

measurement defined on the orange box, and the values of Φ1,2 and Θ are determined

by whether a phase gadget error is produced in this measurement. See the proof

of lemma 5.4.5 for details about how to determine whether a phase gadget error

appears in the measurement.

If no phase gadget error is produced, then Φ1,2 = S∗ and Θ = S. By lemmas

5.4.5, 5.4.4, and 5.4.9, after performing measurements in the second step, we will

have a binary π
4 phase gadget on qubits 1 and 2, two S gates on qubit 1, two S gates

on qubit 2, two S gates on qubit 3, and Pauli Z errors on qubits 1, 2, and 3. By the

spider fusion rule (f), two S gates are equal to an identity operation up to Pauli

Z errors. So, in this case, The measurement pattern implements a binary π
4 phase

gadget on qubits 1 and 2, up to Pauli Z errors.

Otherwise, a π
2 phase gadget error is produced, then we have Φ1,2 = P1,2 and

Θ = I. By lemmas 5.4.5, 5.4.6, and 5.4.10, after performing measurements in the

second step, we will have a binary π
4 phase gadget on qubits 1 and 2, a binary π

2

phase gadget on qubits 1 and 2, two S errors on qubit 3, a π
2 phase gadget error on

qubits 1 and 2, and Pauli Z errors on qubits 1, 2, and 3. By the phase gadget fusion

rule (PG1), the binary π
2 phase gadget and the π

2 phase gadget error fuse into a π

phase gadget, and by equation (PGπ) the π phase gadget "break down" into Pauli

Z errors. By the spider fusion rule (f), two S errors fuse up to one Pauli Z error.

So, in this case, the measurement pattern implements a binary π
4 phase gadget on

qubits 1 and 2, up to Pauli Z errors. �

91

5. A New MBQC Model

The following lemma 5.4.17 justifies measurement patterns implementing binary
π
2 phase gadgets on the filled orange box system.

Lemma 5.4.17. The following three statements hold true:

• The measurement pattern defined in figure A.17 implements a binary π
2 phase

gadget on qubits 1 and 2, up to Pauli Z errors.

• The measurement pattern defined in figure A.15 implements a binary π
2 phase

gadget on qubits 1 and 3, up to Pauli Z errors.

• The measurement pattern defined in figure A.16 implements a binary π
2 phase

gadget on qubits 2 and 3, up to Pauli Z errors.

Proof. We only need to prove the first part of the lemma, since the three parts are

symmetric.

By lemmas 5.4.2, 5.4.6, 5.4.9, and 5.4.10, after performing the measurements

defined in A.17, we will have a binary π
2 phase gadget on qubits 1 and 2, three S

errors on qubit 3, two S errors on qubit 1, two S errors on qubit 2, and Pauli Z errors

on qubits 1, 2, and 3. By the spider fusion rule (f), two S errors fuse up to one Pauli

Z error. Therefore, this measurement pattern implements a binary π
2 phase gadget

on qubits 1 and 2, up to Pauli Z errors. �

The following lemma 5.4.18 justifies the measurement pattern implementing

trinary π
4 phase gadgets on the filled orange box system.

Lemma 5.4.18. The measurement pattern defined in figure 5.21 implements a

trinary π
4 phase gadget on qubits 1, 2, and 3, up to Pauli Z errors.

Proof. This measurement pattern is performed in two steps, in the first step we

perform measurement defined on the orange box, and the values of Φ∗ and Θ are

determined by whether a phase gadget error is produced in this measurement.

If no phase gadget is produced, then Φ∗ = S∗ and Θ = S. By lemmas 5.4.7, 5.4.4,

and 5.4.9, after performing measurements in the second step, we will have a trinary

92

5. A New MBQC Model

π
4 phase gadget on qubits 1, 2, and 3, two S gates on qubit 1, two S gates on qubit 2,

two S gates on qubit 3, and Pauli Z errors on qubits 1, 2, and 3. By the spider fusion

rule (f), two S errors fuse up to one Pauli Z error. In this case, The measurement

pattern implements a trinary π
4 phase gadget on qubits 1, 2 and 3, up to Pauli Z

errors.

Otherwise, a trinary π
2 phase gadget error is produced, then we have Φ∗ = P∗ and

Θ = I. By lemmas 5.4.7, 5.4.8, and 5.4.10, after performing measurements in the

second step, we will have a trinary π
4 phase gadget on qubits 1, 2 and 3, a trinary

π
2 phase gadget on qubits 1, 2, and 3, a trinary π

2 phase gadget error on qubits 1,

2, and 3, and Pauli Z errors on qubits 1, 2, and 3. By the phase gadget fusion law

(PG1), the trinary π
2 phase gadget and the trinary π

2 phase gadget error fuse into a

π phase gadget, and by equation (PGπ) π phase gadget "break down" into Pauli Z

errors. Therefore, the measurement pattern implements a trinary π
4 phase gadget on

qubits 1, 2, and 3, up to Pauli Z errors. �

5.5 Correction of measurement errors

In this section, we show how we make small changes to measurement patterns

introduced in section 5.3, so that we can use the idea of feed-forward to correct

measurement errors. The feed-forward technique is introduced in section 2.9.2

and how to equip measurement patterns with feed-forward is introduced in section

2.9.3. Recall that in order to apply feed-forward to correct errors, we need to

ensure that all defined measurement patterns admit feed-forward. A measurement

pattern admits feed-forward, if it can take Pauli Z and X errors coming on its

input wires, and after the measurement pattern is performed, only Pauli Z and

X errors will appear on its output wires.

To begin with, let us consider what kind of non-Pauli errors could be produced

if Pauli X and Z errors pass through our measurement patterns.

93

5. A New MBQC Model

Fact 5.5.1. For measurement patterns that implement a T gate, Pauli Z errors can

freely pass through the implementation by rule (f), but when the Pauli X error

passes through a T gate, a Pauli Z error and a S error are produced, where the S

error is non-Pauli:

aπ π
4

(π)= aπ(−1)a π4 (f)= aππ
4 a · π2 aπ

Fact 5.5.2. For measurement patterns that implement S or identity gates, Pauli X

and Z errors can both freely pass through the implementation without producing

any errors other than Pauli Z and X errors, since we have:

bπaπ π
2

(f),(π)= bπaπ(−1)a π2 (f),(π)= (a+ b)πaππ
2

Fact 5.5.3. For measurement patterns that implement a binary or trinary π
4 phase

gadget, Pauli Z errors can freely pass through the implementation by rule (f), but

when Pauli X error passes through a binary or trinary π
4 phase gadget, a binary or

trinary π
2 phase gadget error and Pauli Z errors are produced:

aπ

(NPG)=

aπ

π
4 (−1)a π4 (PG1),(PGπ)=

aπ

π
4 a · π2

aπ

(NPG)=

aπ

π
4 (−1)a π4

(PG1),(PGπ)=

aπ

π
4 a · π2

aπ

aπ

aπ

aπ

aπ

Fact 5.5.4. For measurement patterns that implement a binary or trinary π
2 phase

gadget, Pauli X and Z errors can both freely pass through the implementation

without producing any errors other than Pauli Z and X errors, since we have:

aπ

(f),(NPG)=

aπ

π
2 (−1)a π2

(PG1)=

aπ

π
2 a · π

bπ bπ

bπ

(π),(c)=

aπ

π
2

aπ

(a+ b)π

94

5. A New MBQC Model

aπ

(f),(NPG)=

aπ

π
2 (−1)a π2

(PG1)=

aπ

π
2 a · π

bπ bπ

bπ

(π),(c)=

aπ

π
2

aπ

(a+ b)π

aπ

We will use the above facts in our following discussions.

Now, we make changes to measurement patterns defined in section 2.9.3 so as to

make them admit feed-forward. The concept of measurement patterns admitting

feed-forward is introduced in section 2.9.3. Our idea of making a measurement

pattern admit feed-forward is to adjust measurement patterns on subsystems like

orange, red, and grey boxes according to the Pauli X and Z errors coming on input

wires in a way where all undesired errors like S errors and phase gadget errors

produced within this measurement pattern are cancelled out or transformed to Pauli

X and Z errors, and thus only Pauli X and Z errors could appear on output wires.

Measurement patterns in figures 5.16, A.11, and A.12 For the measurement

pattern defined in figure 5.16, we change it to the measurement pattern illustrated

in figure 5.23.

1 2 3

:= 1 2 3
T1

S∗
T

Γ I

I

Figure 5.23: A measurement pattern defined on the filled orange box system that admits
feed-forward. The value of Γ in this pattern is determined by whether there is a Pauli X
error coming to qubit 1: Γ = S if there is a Pauli X error coming to qubit 1; otherwise
Γ = I. Qubits 1, 2, 3 are both inputs and outputs.

Proposition 5.5.5. The measurement pattern defined in figure 5.23 implements a

T gate on qubit 1 and admits feed-forward.

95

5. A New MBQC Model

Proof. We assume that there are Pauli X and Z errors on input wires, since if there

are no Pauli X or Z errors on input wires, then the case is discussed in lemma 5.4.14.

By fact 5.5.2, and lemmas 5.4.1, 5.4.4, and 5.4.9, after measurements are performed,

Pauli X and Z errors can pass through qubits 2 and 3 and only Pauli Z and X errors

appear on output wires. By fact 5.5.1, and lemmas 5.4.1, 5.4.4, and 5.4.9, after

measurements are performed, Pauli Z errors can freely pass through qubit 1, but

when a Pauli X error passes through qubit 1, an additional S error will be produced,

since there is a T gate on qubit 1.

Therefore, by facts 5.5.2 and 5.5.1, and lemmas 5.4.1, 5.4.4, and 5.4.9, after

measurements are performed and Pauli X and Z errors pass through qubits 1, 2,

and 3, there will be a T gate on qubit 1, four S errors on qubit 1, and Pauli Z and

X errors on qubits 1, 2, and 3. By rule of (f), four S errors fuse up to an identity

wire. So, this measurement pattern implements a T gate on qubit 1 and admits

feed-forward. �

We can make similar changes to measurement patterns defined in figures A.11

and A.12 so as to make them admit feed-forward, since these measurement patterns

are symmetric to the one defined in figure 5.16.

Measurement pattern in figure 5.18 This measurement pattern admits feed-

forward on its own, since by fact 5.5.2, Pauli X and Z errors can pass through S or

identity gates without producing errors other than Pauli X and Z errors. So, we do

not need to make any change to it. Recall that this measurement pattern is defined

in a general form that includes cases like those defined in figures 5.17 and 5.19

Measurement patterns in figures 5.20, A.13, and A.14 Next, we will use

the notation Err-X1,2 to describe Pauli X errors coming on qubits 1 and 2: If there

are no Pauli X error coming on qubits 1 or 2, or there are a Pauli X error coming

on qubit 1 and a Pauli X error coming on qubit 2, then Err-X1,2 = even; otherwise

96

5. A New MBQC Model

Err-X1,2 = odd. For the measurement pattern defined in figure 5.20, we change it

to the measurement pattern defined in figure 5.24.

1 2 3

:= 1 2 3P1,2

Λ1,2
Pπ

4

Γ Γ

I

Figure 5.24: A measurement pattern on the filled orange box system that admits feed-
forward. This pattern is performed in two steps. First, we perform on the orange box P1,2
measurement pattern. The values of Λ1,2 and Γ depend on whether a phase gadget error
is produced in this measurement and whether there are Pauli X errors coming on qubits
1 and 2: If a phase gadget error is produced and Err-X1,2 = even, then Λ1,2 = P1,2 and
Γ = I; if a phase gadget error is produced and Err-X1,2 = odd, then Λ1,2 = S∗ and Γ = S;
if no phase gadget error is produced and Err-X1,2 = even, then Λ1,2 = S∗ and Γ = S; if
no phase gadget error is produced and Err-X1,2 = odd, then Λ1,2 = P1,2 and Γ = I. Then
we perform all the rest of measurement patterns. Qubits 1, 2, and 3 are both inputs and
outputs.

Proposition 5.5.6. The measurement pattern defined in figure 5.24 implements a

binary π
4 phase gadget on qubits 1 and 2 and admits feed-forward.

Proof. We assume that there are Pauli X and Z errors on input wires, since if there

are no Pauli X or Z errors on input wires, then the case is discussed in lemma 5.4.16.

By fact 5.5.2 and lemmas 5.4.16, 5.4.4, 5.4.6, and 5.4.10, after measurements are

performed, Pauli X and Z errors can pass through qubit 3 and only Pauli Z and

X errors appear on the output wire of qubit 3. For qubits 1 and 2, we have the

following cases:

• (i) there is no Pauli X error coming on qubit 1 or 2. In this case, this

measurement pattern becomes that defined in figure 5.20. By lemma 5.4.16

and fact 5.5.3, after the measurement pattern is performed and Pauli Z errors

pass through qubits 1 and 2, there will be a binary π
4 phase gadget on qubits 1

and 2 and Pauli Z errors on qubits 1 and 2.

• (ii) there are one Pauli X error coming on qubit 1 and another Pauli X error

coming on qubit 2. In this case, this measurement pattern becomes the

97

5. A New MBQC Model

one defined in figure 5.20. By lemma 5.4.16, facts 5.5.3 and 5.5.4, after the

measurement pattern is performed and Pauli X and Z errors pass through

qubits 1 and 2, there will be a binary π
4 phase gadget, Pauli X and Z errors,

and phase gadget errors on qubits 1 and 2. If no phase gadget error is produced

in the first step, then there will be two π
2 phase gadget errors on qubits 1 and

2; otherwise, there will be four π
2 phase gadget errors on qubits 1 and 2.

• (iii) there is one Pauli X error coming on qubit 1 but no Pauli X error coming

on qubit 2. If a phase gadget error is produced in the first step, then we have

Λ1,2 = S∗ and Γ = S. By lemmas 5.4.4, 5.4.9, facts 5.5.3 and 5.5.4, after

measurements are performed and Pauli X and Z errors pass through qubits

1, 2, and 3, there will be a binary π
4 phase gadget on qubits 1 and 2, two π

2

phase gadget errors on qubits 1 and 2, two S errors on qubit 1, two S errors

on qubit 2, and Pauli Z and X errors on qubits 1, 2, and 3. Otherwise, no

phase gadget error is produced in the first step, then we have Λ1,2 = P1,2 and

Γ = I. By lemmas 5.4.6, 5.4.10, facts 5.5.3 and 5.5.4, after measurements are

performed and Pauli X and Z errors pass through qubits 1, 2, and 3, there will

be a binary π
4 phase gadget on qubits 1 and 2, two π

2 phase gadget errors on

qubits 1 and 2, and Pauli X and Z errors on qubits 1, 2, and 3.

• (iv) there is one Pauli X error coming on qubit 2 but no Pauli X error coming

on qubit 1. This case is symmetric to (iii).

In each case, on qubits 1 and 2, there are even number of π
2 phase gadget errors, and

on any qubit, there are even number of S errors. Two π
2 phase gadget errors fuse up

to π phase gadgets by (PG1) and then "break down" to Pauli Z errors by equation

(PGπ), and two S errors fuse up to be Pauli Z errors by rule of (f). Therefore, this

measurement pattern implements a binary π
4 phase gadget on qubits 1 and 2 and

admits feed-forward. �

98

5. A New MBQC Model

We can make similar changes to other measurement patterns on filled orange box

such as those in figures A.13 and A.14 so as to make them admit feed-forward, since

these measurement patterns are symmetric to that defined in figure 5.20.

Measurement pattern in figure 5.21 For the measurement pattern defined in

figure 5.21, we change it to the measurement pattern illustrated in figure 5.25, where

the notation Err-X∗ to describe Pauli X errors coming on qubits 1, 2, and 3: If there

are no Pauli X error coming on qubits 1, 2, and 3, or there are two Pauli errors

on two out of the three qubits, then Err-X∗ = even; otherwise Err-X∗ = odd. The

1 2 3

:= 1 2 3
P∗

Λ∗
Pπ

4

Γ Γ

Γ

Figure 5.25: A measurement pattern on the filled orange box system that admits feed-
forward. This pattern is performed in two steps. First, we perform on the orange box P∗
measurement pattern. The value of Λ∗ and Γ depend on whether there is a phase gadget
is produced in this measurement and whether there are Pauli X errors coming on qubits 1
and 2: If a phase gadget error is produced and Err-X∗ = even, then Λ∗ = P∗ and Γ = I; if
a phase gadget error is produced and Err-X∗ = odd, then Λ∗ = S∗ and Γ = S; if no phase
gadget error is produced and Err-X∗ = even, then Λ∗ = S∗ and Γ = S; if no phase gadget
error is produced and Err-X∗ = odd, then Λ∗ = P∗ and Γ = I. Then we perform all the
rest of measurement patterns. Qubits 1, 2, and 3 are both inputs and outputs.

justification for this pattern is similar to the proof for proposition 5.5.6.

Measurement patterns in figures A.17, A.15, A.16, and 5.22 These

measurement patterns admit feed-forward themselves, since by fact 5.5.4, Pauli

X and Z errors can pass through π
2 phase gadgets without producing errors other

than Pauli X and Z errors, so we do not need to make any change to them.

Other measurement patterns on filled orange boxes We can use similar

techniques to make measurement patterns like those defined in figures A.18, A.21,

and A.19 admit feed-forward.

99

5. A New MBQC Model

Measurement patterns on ropes For measurement patterns defined on rope

system, namely the ones defined in figures 5.14 and 5.15, they admit feed-forward

on their own, since by rule (h) Pauli X and Z errors can pass through Hadamard

gates without producing errors other than Pauli X and Z errors. Therefore, we

do not need to make any change to them either.

Now, we put everything together.

Proposition 5.5.7. Our MBQC model can correct measurement errors by feed-

forward.

Proof. Our new resource state is composed by filled orange boxes and ropes. After

making changes discussed in this section, all measurement patterns defined on

fragments (filled orange boxes and ropes) of our resource state admit feed-forward.

Therefore, our MBQC model can correct errors by feed-forward. �

5.6 Universality and determinism

In this section, we show that our new resource state based MBQC model can

achieve universal computations with a deterministic protocol. The idea of proving

universality introduced in section 2.7 is used.

Proposition 5.6.1. Our MBQC model can achieve universal computations with a

deterministic protocol.

Proof. We show that we can implement gates from the universal gate set {S,

Hadamard, CNOT , T} and compose them arbitrarily.

By lemmas 5.4.15, 5.4.13, and 5.4.14, we can implement S gates, Hadamard gates,

and T gates, up to Pauli X and Z errors. By lemmas 5.4.15, 5.4.17, 5.4.12, fact 5.5.2,

and equation (FT2), we can implement a CZ gate on two neighbouring qubits up to

Pauli X and Z errors, using the measurement pattern shown in figure 5.26. We can

100

5. A New MBQC Model

Pπ
2

===

===

1

2

S

S

I

Figure 5.26: A measurement pattern that implements a CZ gate on qubits 1, 2, up to
Pauli X and Z errors.

compose Hadamard gates and a CZ gate on two neighbouring qubits to implement a

CNOT gate on two neighbouring qubits, since we have:

(h)=

By how we construct the resource state as illustrated in figure 5.7, we can compose

implemented gates in any way we want. By sequential composing three implementa-

tions of the CNOT gate on neighbouring qubits, we can implement a SWAP gate on

neighbouring two qubits, since we have: [10]

=

By composing CNOT and SWAP gates on neighbouring qubits together, we can

implement CNOT gates on arbitrary two qubits using the technique illustrated in

figure 5.27. Since we can (i) implement all gates from the universal gate set up to

Pauli Z and X errors, (ii) compose them in an arbitrary way, and (iii) correct Pauli

X and Z errors by applying feed-forward technique as discussed in section 5.5, we

thus conclude that our new resource state based MBQC model can achieve universal

computations with a deterministic protocol.

�

101

5. A New MBQC Model

i

(i+ 1)

(j − 1)

j

=
... ...

i

(i+ 1)

(j − 1)

j

... ...

Figure 5.27: Technique to implement a CNOT gate on two qubits over arbitrary distance
by composing CNOT and SWAP gates on neighbouring qubits. Assume we want to
implement a CNOT gate on qubits i and j (i < j). We first implement a CNOT gate on
qubits i and (i + 1), then use SWAP gates to "slide" the CNOT gate to the right place and
apply additional SWAP gates so that all SWAP gates cancel out with each other.

Examples We provide an example of using our MBQC model.

Proposition 5.6.2. The measurement pattern defined in figure 5.28 implements a

CCZ gate on qubits 1, 2, and 3, up to X and Z Pauli errors.

Remark 5.6.3. This measurement pattern faithfully implement each gate on the

right-hand side of the equation (FT3).

P−π4

===

===

===

Pπ
4

Pπ
4

===

===

===

Pπ
4

T †

T †

T †

===

===

===

===

===

===

1

2

3

Figure 5.28: A measurement pattern that implements a CCZ gate on qubits 1, 2, and 3,
up to X and Z Pauli errors.

102

6
Conclusion and Future Work

6.1 Conclusions

In this thesis, we have given graphical proofs in ZH-calculus for MBQC protocols

based on the GGM state and Union Jack state, investigated the link between

hypergraph and phase gadget state MBQC, and presented a new MBQC model that

achieves universal computations with a deterministic scheme.

As we saw, our proofs for hypergraph MBQC protocols are not only concise

and intuitive, but also easy to understand and validate. Our contribution provides

more explainability and interpretability for hypergraph MBQC models. In [12], the

authors have used a lot of matrix notations to formulate Pauli Z and X measurements

on the GGM state, while we have diagrammatically justified measurement patterns

step by step, and each single step of our derivations only uses simple and concise

rules of the ZH-calculus. In particular, we have clearly proved the correctness

of measurement patterns where several Pauli X measurements are performed to

deterministically implement CZ wires. Since a single-qubit Pauli X measurement

on a hypergraph state yields a state that is not a hypergraph state [18], it is

confusing at first glance how several Pauli X measurements interact with each

other to implement a state that belongs to the family of hypergraph states. Our

diagrammatic proofs interpret the process of performing measurement patterns into

103

6. Conclusion and Future Work

multiple stages where transformations from one stage to another follow simple rules

of ZH-calculus and our intuitions. In [11], the authors have used matrix notations

and text descriptions to justify that a CCZ gate can be implemented by composing

UI and SWAP gates together, while we have translated the large measurement

pattern into a ZH-diagram and seen that gates can "slide" along wires and cancel

out with each other, which also follows our intuitions.

Although hypergraph states and phase gadget states both have a structure of

hypergraphs, the relation between hypergraph and phase gadget state MBQC has

not been studied before. We have built a bridge between hypergraph state MBQC

and phase gadget state MBQC by applying Graphical Fourier theory to demonstrate

the equivalence between the Union Jack state and a phase gadget state, and our

work also provides motivations for future studies of relations between MBQC models.

Besides, this equivalence we have shown also confirms that it is possible to use

only trinary π
4 phase gadgets to build a universal resource state, which provides

inspirations for future constructions of MBQC models.

Inspired by the equivalence between Union Jack states and phase gadget states,

we have used trinary π
4 phase gadgets to construct a new resource state. Our MBQC

model provides an alternative idea to construct a universal MBQC model with a

scheme to deterministically correct errors.

We have introduced notations of boxes and ropes to better present our resource

state and describe measurement patterns. These notations enable us to represent

complex systems in an elegant way by systematically encapsulating qubits and phase

gadgets into boxes or ropes. More importantly, our notations allow us to easily

define a lot of measurement patterns on one system or one fragment of resource

states. However, our notations have not modelled the errors and dependency between

measurements in an ideal way, so we need additional descriptions in our proofs

to make our scheme of error correction clear. As a contrast to our notation, the

notation given in [10] elegantly describes errors passing among fragments, though

it does not model the dependency between measurements.

104

6. Conclusion and Future Work

It turns out that the idea of using trinary π
4 phase gadgets leads us to a method of

generalizing the construction of phase gadget states. By a Pauli Z measurement, we

can transform a trinary π
4 phase gadget to a binary π

4 phase gadget (up to Pauli errors).

Hence any resource state constructed by binary π
4 phase gadgets can be implemented

by some phase gadget state composed by trinary π
4 phase gadgets. So, our resource

state seems to belong a more generalized family of phase gadget states, compared to

the resource state presented in [10] which is constructed by binary π
4 phase gadgets.

6.2 Future work

Although trinary phase gadgets seem to be more generalized building blocks than

binary ones, trinary-phase-gadget constructions potentially cost much more qubits

than binary-phase-gadget constructions. Therefore, it would be interesting to

investigate whether we can use trinary phase gadgets as building blocks and construct

a more compact universal resource state.

Besides, it is not clear whether using phase gadgets with more input wires brings

us additional expressive power. It might be the case that for a phase gadget state

constructed by k-ary phase gadgets where k > 2, we could construct an equivalent

or similar resource state using phase gadgets with less input wires. So, some possible

future work could be a study of the relation between the number of inputs of phase

gadgets and their expressive power in MBQC.

In another direction, we could also move away from using only one type of gates

and try using two or more types of phase gadgets to construct universal resource

states. For example, we might consider using both binary and trinary phase gadgets

as building blocks. Relaxing the restriction on the type of phase gadgets may add

flexibility to our work of constructing.

It would be interesting to consider modifying the structure of Union Jack state

so that we get a new resource state that admits a deterministic method to correct

errors in an easy way while maintaining universality achieved by the Union Jack

state. We have tried to construct 3-D structured states where the bottom layer is

105

6. Conclusion and Future Work

exactly the Union Jack state, and additional structures are added above the bottom

layer. By adding additional structures, it is not hard to eliminate side effects caused

by errors of Pauli Z measurements on the Union Jack state. It turns out that Pauli

Z measurements in protocols of Union Jack state MBQC are used to form desired

"borders" which are CZ wires or edges between adjacent qubits [11]:

borders

Errors produced by Pauli Z measurements can lead to failure to form desired CZ

edges or appearance of undesired CZ edges. To eliminate this side effect, we could

consider the following toy construction:

...

...

...

...

...

The additional structure composed above the layer of Union Jack state is used to

deterministically select desired CZ edges on two neighbouring or adjacent qubits. We

can select whether to compose an additional CZ gate on two neighbouring qubits by

106

6. Conclusion and Future Work

choice of Pauli X or Z measurements on two middle qubits of the additional structure:

X

X

→

Z

Z

→

(ignore irrelevant errors) (ignore irrelevant errors)

If a "border" has not appeared because of errors, then we compose an additional

CZ gate on the corresponding position; if there is an undesired CZ edge, then

we also compose an additional CZ gate on the two qubits, since they cancel out

each other by equation (CZ1). With this toy construction, we can deterministic

select "borders" in the Union Jack state, which could potentially help us shape

the state into some interesting structure. It is worth studying how to design and

use additional structures to cleverly correct all measurement errors produced in

the Union Jack state based MBQC.

107

Appendices

108

A
Additional measurement patterns

A.1 Measurement patterns for chapter 3

Figure A.1: The measurement pattern proposed in [11] that implements a CCZ
gate. UI and SWAP in this figure are gates implemented by corresponding measure-
ment patterns given in [11]. UI gate is a three-qubit operation such that U

(i,j,k)
I =

CCZ(i,j,k)√CZ
(i,j)√

CZ
(j,k).

A.2 Measurement patterns for chapter 5

109

A. Additional measurement patterns

Z X Z

Z Z Z

Z X Z

1 2 3

1 2 3 :=T2

Figure A.2: A measurement pattern on the orange box notation. This measurement
pattern implements a T gate on the qubit 2. Qubits 1, 2, and 3 are both inputs and
outputs.

Z Z X

Z Z Z

Z Z X

1 2 3

1 2 3 :=T3

Figure A.3: A measurement pattern on the orange box notation. This measurement
pattern implements a T gate on the qubit 3. Qubits 1, 2, and 3 are both inputs and
outputs.

Z Z Z

Z Z Z

Z Z Z

1 2 3

1 2 3 :=S∗

Figure A.4: A measurement pattern on the red box notation. This measurement pattern
implements S gates on qubits 1, 2, and 3. Qubits 1, 2, and 3 are both inputs and outputs.

110

A. Additional measurement patterns

X Z X

Z Z Z

X Z X

1 2 3

1 2 3 :=P1,3

Figure A.5: A measurement pattern on the orange box notation. This measurement
pattern implements a binary π

4 phase gadget on qubits 1 and 3. Qubits 1, 2, and 3 are
both inputs and outputs.

Z X X

Z Z Z

Z X X

1 2 3

1 2 3 :=P2,3

Figure A.6: A measurement pattern on the orange box notation. This measurement
pattern implements a binary π

4 phase gadget on qubits 2 and 3. Qubits 1, 2, and 3 are
both inputs and outputs.

X X Z

Z Z Z

X X Z

1 2 3

1 2 3 :=P1,2

Figure A.7: A measurement pattern on the red box notation. This measurement pattern
implements a binary π

2 phase gadget on qubits 1 and 2. Qubits 1, 2, and 3 are both inputs
and outputs.

111

A. Additional measurement patterns

X Z X

Z Z Z

X Z X

1 2 3

1 2 3 :=P1,3

Figure A.8: A measurement pattern on the red box notation. This measurement pattern
implements a binary π

2 phase gadget on qubits 1 and 3. Qubits 1, 2, and 3 are both inputs
and outputs.

Z X X

Z Z Z

Z X X

1 2 3

1 2 3 :=P2,3

Figure A.9: A measurement pattern on the red box notation. This measurement pattern
implements a binary π

2 phase gadget on qubits 2 and 3. Qubits 1, 2, and 3 are both inputs
and outputs.

X X X

Z Z Z

X X X

1 2 3

1 2 3 :=P∗

Figure A.10: A measurement pattern on the red box notation. This measurement pattern
implements a trinary π

2 phase gadget on qubits 1, 2, and 3. Qubits 1, 2, and 3 are both
inputs and outputs.

112

A. Additional measurement patterns

1 2 3

:= 1 2 3
T2

S∗
T

II

I

Figure A.11: A measurement pattern on the filled orange box notation. This measurement
pattern implements a T gate on qubit 2. Qubits 1, 2, and 3 are both inputs and outputs.

1 2 3

:= 1 2 3
T3

S∗
T

I I

I

Figure A.12: A measurement pattern on the filled orange box notation. This measurement
pattern implements a T gate on qubit 3. Qubits 1, 2, and 3 are both inputs and outputs.

1 2 3

:= 1 2 3P1,3

Φ1,3
Pπ

4

Θ

Θ

I

Figure A.13: A measurement pattern on the filled orange box notation. First, we perform
on the orange box P1,3 measurement pattern. If a phase gadget error is produced then
Φ1,3 = P1,3 and Θ = I; otherwise Φ1,3 = S∗ and Θ = S. Then we perform all the rest of
measurement patterns. This measurement pattern implements a binary π

4 phase gadget on
qubits 1 and 2. Qubits 1, 2, and 3 are both inputs and outputs.

1 2 3

:= 1 2 3P2,3

Φ2,3
Pπ

4

I Θ

Θ

Figure A.14: A measurement pattern on the filled orange box notation. First, we perform
on the orange box P2,3 measurement pattern. If a phase gadget error is produced then
Φ2,3 = P2,3 and Θ = I; otherwise Φ2,3 = S∗ and Θ = S. Then we perform all the rest of
measurement patterns. This measurement pattern implements a binary π

4 phase gadget on
qubits 1 and 2. Qubits 1, 2, and 3 are both inputs and outputs.

113

A. Additional measurement patterns

1 2 3

:= 1 2 3
S∗

P1,3
Pπ

2

S I

S

Figure A.15: A measurement pattern on the filled orange box notation. This measurement
pattern implements a binary π

2 phase gadget on qubits 1 and 3. Qubits 1, 2, and 3 are
both inputs and outputs.

1 2 3

:= 1 2 3
S∗

P2,3
Pπ

2

I S

S

Figure A.16: A measurement pattern on the filled orange box notation. This measurement
pattern implements a binary π

2 phase gadget on qubits 2 and 3. Qubits 1, 2, and 3 are
both inputs and outputs.

1 2 3

:= 1 2 3
S∗

P1,2
Pπ

2

S S

I

Figure A.17: A measurement pattern on the filled orange box notation. This measurement
pattern implements a binary π

2 phase gadget on qubits 1 and 2. Qubits 1, 2, and 3 are
both inputs and outputs.

1 2 3

:= 1 2 3
T1

S∗
T †

S I

I

Figure A.18: A measurement pattern on the filled orange box notation. This measurement
pattern implements a T † gate qubits 1. Qubits 1, 2, and 3 are both inputs and outputs.

114

A. Additional measurement patterns

1 2 3

:= 1 2 3P1,2

Φ1,2
P−π4

Θ Θ

I

Figure A.19: A measurement pattern on the filled orange box notation. First, we perform
on the orange box P1,2 measurement pattern. If a phase gadget error is produced then
Φ1,2 = S∗ and Θ = S; otherwise Φ1,2 = P1,2 and Θ = I. Then we perform all the rest of
measurement patterns. This measurement pattern implements a binary −π

4 phase gadget
on qubits 1 and 2. Qubits 1, 2, and 3 are both inputs and outputs.

1 2 3

:= 1 2 3
P∗

Φ∗
P−π4

Θ Θ

Θ

Figure A.20: A measurement pattern on the filled orange box notation. First, we perform
on the orange box P∗ measurement pattern. If a phase gadget error is produced then
Φ∗ = S∗ and Θ = S; otherwise Φ∗ = P∗ and Θ = I. Then we perform all the rest of
measurement patterns. This measurement pattern implements a trinary −π

4 phase gadget
on qubits 1, 2, and 3. Qubits 1, 2, and 3 are both inputs and outputs.

1 2 3

:= 1 2 3
S∗

P1,2
Pπ

2

I I

I

S S

Figure A.21: A measurement pattern on the filled orange box notation. This measurement
pattern implements a binary π

2 phase gadget on qubits 1 and 2, a S gate on qubit 1 and
another S gate on qubit 2. Qubits 1, 2, and 3 are both inputs and outputs.

115

References

[1] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in
Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.

[2] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2010.

[3] Robert Raussendorf and Hans J. Briegel. “A One-Way Quantum Computer”. In:
Phys. Rev. Lett. 86 (22 May 2001), pp. 5188–5191. url:
https://link.aps.org/doi/10.1103/PhysRevLett.86.5188.

[4] M Rossi et al. “Quantum hypergraph states”. In: New Journal of Physics 15.11 (Nov.
2013), p. 113022. url: http://dx.doi.org/10.1088/1367-2630/15/11/113022.

[5] Simon Anders and Hans J. Briegel. “Fast simulation of stabilizer circuits using a
graph-state representation”. In: Physical Review A 73.2 (Feb. 2006). url:
http://dx.doi.org/10.1103/PhysRevA.73.022334.

[6] Nathan Shettell and Damian Markham. “Graph States as a Resource for Quantum
Metrology”. In: Physical Review Letters 124.11 (Mar. 2020). url:
http://dx.doi.org/10.1103/PhysRevLett.124.110502.

[7] S R Clark, C Moura Alves, and D Jaksch. “Efficient generation of graph states for
quantum computation”. In: New Journal of Physics 7 (May 2005), pp. 124–124. url:
http://dx.doi.org/10.1088/1367-2630/7/1/124.

[8] Yuki Takeuchi, Tomoyuki Morimae, and Masahito Hayashi. Quantum computational
universality of hypergraph states with Pauli-X and Z basis measurements. 2019.
arXiv: 1809.07552 [quant-ph].

[9] Maarten Van den Nest et al. “Universal Resources for Measurement-Based Quantum
Computation”. In: Phys. Rev. Lett. 97 (15 Oct. 2006), p. 150504. url:
https://link.aps.org/doi/10.1103/PhysRevLett.97.150504.

[10] Aleks Kissinger and John van de Wetering. “Universal MBQC with generalised
parity-phase interactions and Pauli measurements”. In: Quantum 3 (Apr. 2019),
p. 134. url: http://dx.doi.org/10.22331/q-2019-04-26-134.

[11] Jacob Miller and Akimasa Miyake. “Hierarchy of universal entanglement in 2D
measurement-based quantum computation”. In: npj Quantum Information 2.1 (Nov.
2016). url: http://dx.doi.org/10.1038/npjqi.2016.36.

[12] Mariami Gachechiladze, Otfried Gühne, and Akimasa Miyake. “Changing the
circuit-depth complexity of measurement-based quantum computation with
hypergraph states”. In: Physical Review A 99.5 (May 2019). url:
http://dx.doi.org/10.1103/PhysRevA.99.052304.

116

https://link.aps.org/doi/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1088/1367-2630/15/11/113022
http://dx.doi.org/10.1103/PhysRevA.73.022334
http://dx.doi.org/10.1103/PhysRevLett.124.110502
http://dx.doi.org/10.1088/1367-2630/7/1/124
https://arxiv.org/abs/1809.07552
https://link.aps.org/doi/10.1103/PhysRevLett.97.150504
http://dx.doi.org/10.22331/q-2019-04-26-134
http://dx.doi.org/10.1038/npjqi.2016.36
http://dx.doi.org/10.1103/PhysRevA.99.052304

References

[13] Scott Aaronson and Daniel Gottesman. “Improved simulation of stabilizer circuits”.
In: Phys. Rev. A 70 (5 Nov. 2004), p. 052328. url:
https://link.aps.org/doi/10.1103/PhysRevA.70.052328.

[14] John van de Wetering. ZX-calculus for the working quantum computer scientist.
2020. arXiv: 2012.13966 [quant-ph].

[15] Ross Duncan. A graphical approach to measurement-based quantum computing. 2012.
arXiv: 1203.6242 [quant-ph].

[16] Miriam Backens and Aleks Kissinger. “ZH: A Complete Graphical Calculus for
Quantum Computations Involving Classical Non-linearity”. In: Electronic
Proceedings in Theoretical Computer Science 287 (Jan. 2019), pp. 23–42. url:
http://dx.doi.org/10.4204/EPTCS.287.2.

[17] Stach Kuijpers, John van de Wetering, and Aleks Kissinger. Graphical Fourier
Theory and the Cost of Quantum Addition. 2019. arXiv: 1904.07551 [quant-ph].

[18] Mateusz Piotr Kupper. “Analysis of quantum hypergraph states in the ZH-calculus”.
MA thesis. University of Edinburgh, 2019.

[19] Bob Coecke and Ross Duncan. “Interacting quantum observables: categorical
algebra and diagrammatics”. In: New Journal of Physics 13.4 (Apr. 2011), p. 043016.
url: http://dx.doi.org/10.1088/1367-2630/13/4/043016.

[20] Quanlong Wang. An algebraic axiomatisation of ZX-calculus. 2021. arXiv:
1911.06752 [quant-ph].

[21] Miriam Backens et al. Completeness of the ZH-calculus. 2021. arXiv: 2103.06610
[quant-ph].

[22] Brett Giles and Peter Selinger. “Exact synthesis of multiqubit Clifford+Tcircuits”.
In: Physical Review A 87.3 (Mar. 2013). url:
http://dx.doi.org/10.1103/PhysRevA.87.032332.

[23] D. Aharonov. “A Simple Proof that Toffoli and Hadamard are Quantum Universal”.
In: arXiv: Quantum Physics (2003).

[24] D Bacon et al. “Encoded universality in physical implementations of a quantum
computer”. In: arXiv preprint quant-ph/0102140 (2001).

[25] Vincent Danos, Elham Kashefi, and Prakash Panangaden. The Measurement
Calculus. 2007. arXiv: 0704.1263 [quant-ph].

117

https://link.aps.org/doi/10.1103/PhysRevA.70.052328
https://arxiv.org/abs/2012.13966
https://arxiv.org/abs/1203.6242
http://dx.doi.org/10.4204/EPTCS.287.2
https://arxiv.org/abs/1904.07551
http://dx.doi.org/10.1088/1367-2630/13/4/043016
https://arxiv.org/abs/1911.06752
https://arxiv.org/abs/2103.06610
https://arxiv.org/abs/2103.06610
http://dx.doi.org/10.1103/PhysRevA.87.032332
https://arxiv.org/abs/0704.1263

	Introduction
	Introduction
	Outline

	Preliminaries
	Quantum computing
	ZX-calculus
	ZH-calculus
	Phase gadgets
	Graph states and Hypergraph states
	Graphical Fourier theory
	Universal computations
	Quantum circuit model
	Measurement-based quantum computation
	Single-qubit Pauli X and Z measurements in ZH-calculus
	Measurement errors in ZH-calculus
	Measurement patterns in ZH-calculus

	Hypergraph MBQC Models
	GGM state based MBQC model
	The GGM state
	Lemmas
	Measurement patterns
	Correctness of the protocol

	Union Jack state based MBQC model
	Introduction to the Union Jack state
	Correctness of the protocol

	From Hypergraph to Phase Gadget MBQC
	Sign-related decomposition
	Equivalence to phase gadget states

	A New MBQC Model
	Notations
	The new resource state
	Measurement patterns
	Proofs for measurement patterns
	Correction of measurement errors
	Universality and determinism

	Conclusion and Future Work
	Conclusions
	Future work

	Additional measurement patterns
	Measurement patterns for chapter 3
	Measurement patterns for chapter 5

	References

